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Figure 1: Correspondence between two dense shapes computed with our method, using ZoomOut [MRR∗19] on low-resolution meshes. The
coordinates functions of the dancing faun statue on the left (~ 750k vertices) are transferred using a functional map to the Aphaea warrior
statue on the right (~ 3.5M vertices). The colors encode the correspondence. Despite the mesh density, shown in the close-up, the computation
took ~ 2 minutes.

Abstract

We introduce ReMatching, a novel shape correspondence solution based on the functional maps framework. Our method, by
exploiting a new and appropriate re-meshing paradigm, can target shape-matching tasks even on meshes counting millions
of vertices, where the original functional maps does not apply or requires a massive computational cost. The core of our
procedure is a time-efficient remeshing algorithm which constructs a low-resolution geometry while acting conservatively on
the original topology and metric. These properties allow translating the functional maps optimization problem on the resulting
low-resolution representation, thus enabling efficient computation of correspondences with functional map approaches. Finally,
we propose an efficient technique for extending the estimated correspondence to the original meshes. We show that our method
is more efficient and effective through quantitative and qualitative comparisons, outperforming state-of-the-art pipelines in
quality and computational cost.

CCS Concepts
• Computing methodologies → Shape analysis; • Theory of computation → Computational geometry; • Mathematics of
computing → Functional analysis;

https://orcid.org/0000-0001-8008-8468
https://orcid.org/0000-0002-0704-5960
https://orcid.org/0000-0003-0091-7241
https://orcid.org/0000-0003-2790-9591


2 F. Maggioli & D. Baieri & E. Rodolà & S. Melzi / ReMatching: Low-Resolution Representations for Scalable Shape Correspondence

1. Introduction and related work

The task of finding a semantically meaningful correspondence be-
tween discrete surfaces has always been a fundamental topic in
the field of shape analysis. Researchers developed a wealth of so-
lutions for this application, and new methods continue to be de-
signed [DYDZ22,Sah20]. Among the various approaches, the func-
tional maps framework [OBCS∗12, OCB∗16] received significant
attention. Rather than finding a point-wise correspondence, the
functional maps framework aims to define a correspondence be-
tween functions, encoding it into a small matrix. Following this di-
rection, a variety of works tried to improve the actual computation
of the map [DSO20, MRR∗19, RPWO18] or to extend the frame-
work to different types of bases [MRCB18, NMR∗18, MMO∗21].

Despite the amount of research outcomes based on the func-
tional maps framework, both exploiting geometric properties and
tools [ERGB16, BDK17, EBC17] and clever optimization tech-
niques [NO17,RMO∗20,RMWO21], the problem of computing the
map is still bounded by the time complexity of sparse eigendecom-
positions [Kre06]. To overcome this problem, researchers started
investigating scalable solutions to the Laplace-Beltrami eigenprob-
lem. In this regard, multi-resolution techniques [VBCG10,NBH18,
SVBC19, NH22] proved to be very effective for scalable computa-
tion of spectral quantities for tasks such as retrieval and mesh fil-
tering [RWP06,LZ10], but their applicability to the functional map
framework proved to require additional care [MO23]. Furthermore,
recent research proposed spectral coarsening methods [LJO19]
or spectral preserving simplification techniques [LLT∗20]. How-
ever, these techniques usually rely on the computation of the full-
resolution spectrum, making them unsuitable for large-scale appli-
cations. Gao et al. [GRE∗23] proposed a mixed-integer program-
ming scalable solution to the matching problem, but they specif-
ically target sparse correspondences only. Alternatively, Marin et
al. [MCPM24], who provide an approach for human registration
that scales across large datasets, but it is unsuitable for dense
shapes.

Closely related to our work is the contribution from Magnet et
al. [MO23], which, for the first time, proposes a solution for scal-
ing the functional maps approach to high-resolution meshes. Their
idea is to reduce the dimensionality of the eigenproblem, inducing
a linear relationship between the functional space on the mesh and a
lower-dimension functional space on a sparse sample. The extreme
sparsity of the sampling, combined with its efficient computation,
leads to an algorithm that can effectively deal with high-density
meshes. Nevertheless, this type of reduction does not mitigate the
negative influence that small components and local details at high
frequency could have on the alignment of the spectra.

Finally, our pipeline relies on building robust and sparse repre-
sentations of dense meshes while still keeping an approximately
bijective correspondence between the high- and low-resolution
shapes, and it is worth mentioning that other works have already
attempted to do so. Jiang et al. [JSZP20] propose building a lower
resolution prismatic shell preserving bijectivity with the original
surface. However, their algorithm does not scale to meshes with
a high triangle count, gives no control and no guarantees on the
final vertex count, and requires many assumptions on the input
shape (e.g., manifoldness, orientability, no self-intersections). On

the other hand, Liu et al. [LGC∗23] propose to exploit an intrinsic
error metric for decimating a mesh to a given size while keeping
track of a geodesic barycentric mapping of each triangle of the re-
sulting shape to a geodesic triangle on the input surface. Despite
the robustness of the method, the simplification approach makes
it unsuitable for a functional maps setting, where it is required to
decimate shapes from millions of vertices to a few thousand. This
limitation is further discussed in Section 4.2.

We introduce a new scalable functional map pipeline that ef-
ficiently handles meshes with high vertex density (see Figure 1),
yields stable results, and is not bounded by the quality of the origi-
nal triangulation. To summarize:

• we translate the matching pipeline to low-resolution repre-
sentations, enabling a fast and scalable computation of func-
tional maps between dense shapes, providing the first alternative
to [MO23];

• we propose a new efficient and geometry-preserving remeshing
algorithm specifically designed for our pipeline;

• we exploit a fast solution for extending scalar maps from the
low-resolution remeshed shape to the original surface, thus effi-
ciently obtaining suitable bases for function transfer and shape
matching.

2. Background

In the discrete setting, we represent a shape as a triangular mesh
M = (V,E,T ), where (i) V ⊂ R3 is a set of vertices; (ii) E ⊂ V 2

is a set of edges between vertices; (iii) T ⊂ V 3 is a set of triangles
composing the surface.

2.1. Functional maps

We discretize a scalar function f :M→ R as a signal defined on
the vertices V and represented as a vector f ∈ R|V |. Hence, the
Laplace-Beltrami operator ∆M : F(M)→ F(M) is discretized
as a sparse matrix LM ∈R|V |×|V |, generally represented by means
of a stiffness matrix SM and a mass matrix AM [PP93,MDSB03].
The eigendecomposition SMΦM = AMΦMΛM of the Lapla-
cian yields an orthonormal basis for the functional space on the sur-
face [Lev06,LZ10]. This basis has some analogies with the Fourier
basis and is optimal to represent smooth functions when the basis
is truncated [ABK15].

Given two shapes M and N , respectively with m and n ver-
tices, a point-to-point map Π :M→N can be expressed as a bi-
nary matrix Π ∈ {0,1}m×n such that Π(i, j) = 1 if the vertex j-th
of N corresponds to the vertex i-th of M, and Π(i, j) = 0 other-
wise. Any point-wise correspondence Π estabilishes a functional
map TΠ : F(N )→F(M) as TΠ( f ) = f ◦Π, ∀ f ∈ F(N ).

As proposed in [OBCS∗12], given Φk and Ψk the Laplacian
bases truncated to size k respectively onM andN , we can project
TΠ in these bases and compactly encode the functional map in a
k× k matrix C = Φ

⊤
k AM Π Ψk, which is the linear operator that

transfers the coefficients of functions from F(N ) in the ones of
corresponding functions of F(M) respectively computed with Φk
and Ψk.
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Finally, given a functional map TΠ, or its compact representa-
tion C, we can retrieve the correspondence Π on which the map is
built by the nearest neighbor search in the embedding space of the
Laplacian eigenfunctions as detailed in [OCB∗16].

2.2. Intrinsic Delaunay triangulations (IDT)

The IDT [Riv94, BS07] has been introduced for generalizing the
Delaunay triangulation [D∗34] to non-Euclidean metric spaces
where classical algorithms [Bow81, Wat81] cannot be used. IDT
relies on the duality with the Voronoi diagram [ES94, LL00], as
three texels meeting at a point form a triangle whose edges cross
the texels boundaries.
Definition 1. Let (M,dM) be a 2-dimensional metric space (with
distance function dM), and let S = {pi}s

i=1 ⊂ M be a set of s
sample points. The Voronoi decomposition (VD) ofM with respect
to S is the collection {Pi}s

i=1 such that

Pi =

{
q ∈M : pi = argmin

p j∈S

(
dM(p j,q)

)}
,

s⋃
i=1

Pi =M

(1)
The points in S are called generators, and the Pi are called texels
(or cells).

The intersection between two or more texels could be non-empty.
In such a case, we define those texels as adjacent. A VD is general
if the intersection of four or more texels is empty. If a VD is general,
a Voronoi vertex is a point that belongs to three texels, and a Voronoi
edge is a curve C connecting two Voronoi vertices and belonging
to two texels.

It can be shown that there is a one-to-one correspondence be-
tween a Voronoi edge dividing Pi and Pj and a Delaunay edge
connecting pi to p j [DZM07]. This correspondence gives rise to
a necessary and sufficient condition for the IDT to be a proper tri-
angulation (i.e., it realizes a simplicial complex).
Definition 2 ( [ACDL00, ES94]). If S induces a general VD, the
VD satisfies the closed ball property if:

• every Pi is a closed 2-ball (i.e., a topological disk without holes);
• every Pi∩Pj is either empty or a closed 1-ball (i.e., a topological

segment);
• every Pi∩Pj∩Pk is either empty or a closed 0-ball (i.e., a point).
Theorem 1 ( [ES94, ACDL00, DZM07]). If S induces a general
VD, then the VD satisfies the closed ball property if and only if its
dual IDT is a proper triangulation.

3. Method

We introduce a new scalable functional map pipeline handling very
dense meshes and yielding stable results independently of the input
triangulation’s quality.

Our method acts through three main steps. At first, we compute
two low-resolution meshes that preserve the original metrics of the
input shapes (Section 3.1). Then, we apply any existing pipeline,
yielding a functional map between the low-resolution eigenspaces
(Section 3.2). Finally, we extend the eigenfunctions to the origi-
nal meshes, allowing us to use them with the functional map es-
timated in the previous step to compute the desired correspon-
dence between them (Section 3.3). Our technique is very general

Figure 2: The iterative front propagation from samples inducing a
geodesic VD.

and works with arbitrary manifold triangulations, including meshes
with degenerate geometry, non-orientable surfaces, and multiple
connected components. The manifoldness requirement does not
provide an obstacle to the applicability of our algorithm, as it can
be efficiently enforced using existing techniques [FCS∗13].

3.1. Intrinsic Delaunay remeshing

Front propagation and FPS. Naively computing the VD induced
by a set of samples can quickly become very expensive. The ex-
act geodesic algorithm introduced by Mitchell et al. [MMP87] is
computationally unfeasible on large meshes. Even using faster so-
lutions, such as the heat method [CWW13], the fast marching algo-
rithm [KS98], or even the Dijkstra distance [Dij59], searching the
closest sample for each vertex is still aO (|V | s) operation. Instead,
we take inspiration from the front propagation method proposed by
Peyré et al. [PC06]. We start with a decomposition of the mesh in-
duced by a single sample p1. This means that every vertex v is part
of the texel P1 and has distance D1[v] = dM(p1,v) from the sample
set. We then assume to have a decomposition P1, · · · ,Pk−1 induced
by samples p1, · · · , pk−1, and a vector Dk−1 storing the distance
of each vertex from the sample set. When adding a sample pk to
the VD, we can exploit the fact that Dk = min(Dk−1,dM(pk,V )).
We start a front from pk and expand it, updating the distances
and assigning vertices to texel Pk until we reach all vertices such
that Dk−1[v] < dM(pk,v) (see Figure 2). By propagating the front
with the fast marching or Dijkstra’s algorithm, we can compute a
geodesic VD with time O (|V | log(|V |) log(s)).

To obtain the sample points, Peyré et al. [PC06] propose to use
a geodesic farthest point sampling, achieving a geodesic uniform
sampling of the surface.
Definition 3. Let (M,dM) be a 2-dimensional metric space, and
let s ∈ N be an integer. A farthest point sampling (FPS) of size s
with respect to dM is a set Ss ⊂M of s sample points inM, in-
crementally built from a singleton set S1 = {p1} ⊂M according
to the following rule:

Sℓ+1 = Sℓ∪

{
argmax

q∈M
min
p∈Sℓ

dM(q, p)

}
. (2)

However, searching for the maximum distance in Equation (2) at
every new sample brings again the algorithm to a O (|V | s) com-
plexity, really becoming a bottleneck for large meshes counting
millions of vertices. In contrast, we propose to introduce a fixed-
size binary max-heap in the front propagation algorithm, keeping
track of the distances from each vertex to the sample set. During
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Algorithm 1 Geodesic FPS and its VD.
1: procedure VORONOIFPS(M= (V,E,T ), s)
2: i← random index in [1, |V |]
3: S←{i}
4: D← dM(V,Vi)
5: H← max-heap initialized with D
6: P← vector of length |V | initialized to i
7: for h← 2 to s do
8: p← FINDMAX(H)
9: SETKEY(H, p, 0)

10: Dp← 0
11: S← S∪{p}
12: Propagate a front from p.
13: Update D, P, and H.
14: end for
15: end procedure

each front propagation, this heap updates the distance of each vis-
ited vertex in time O (log(|V |)), adding no extra complexity to the
visit. Furthermore, it can gather and set to zero the farthest vertex
at each iteration in justO (log(|V |)) time, totalling a time complex-
ity ofO (|V | log(|V |) log(s)) for the entire procedure. The fast front
propagation algorithm is summarized in Algorithm 1.

Flat union property. Even if we are able to compute the VD of a
farthest point sampling with high efficiency, we still cannot guaran-
tee that the dual connectivity is a proper IDT. Ensuring the closed
ball property can be computationally challenging. In particular,
identifying the topology of the boundary between each pair of ad-
jacent texels can become very costly when the number of samples
is large. A possibility is to add enough samples so that the surface
locally behaves like a plane. This approach, proposed by Leibon et
al. [LL00] and adopted by Peyré et al. [PC06], makes it easy to lose
control over the number of samples, and anyway the requirements
are not easy to enforce. For guaranteeing a proper IDT, while still
avoiding these issues, we introduce a novel property for a VD. The
proofs of our claims are provided in Appendices A and B.
Definition 4 (Flat Union Property (FUP)). Let (M,dM) be a 2-
dimensional metric space. Let then S = {pi}s

i=1 ⊂M be a set of
s sample points in M, inducing a general VD {Pi}s

i=1. The VD
induced by S satisfies the FUP if:

• every Pi is a closed 2-ball;
• if Pi∩Pj is not empty, then Pi∪Pj is a closed 2-ball;
• if Pi∩Pj ∩Pk is not empty, then Pi∪Pj ∪Pk is a closed 2-ball.
Theorem 2. Let (M,dM) be a 2-dimensional metric space. If a
general VD {Pi}s

i=1 of M satisfies the FUP, it also satisfies the
closed ball property.

The FUP is much easier to verify than the closed ball property,
as we only have to ensure that regions are closed 2-balls. Indeed,
the following property can be exploited in this regard.
Proposition 1. LetM = (V,E,F) be a manifold polygonal mesh,
then M is a closed 2-ball if and only if its Euler characteristic
χ = |V |− |E|+ |F| is 1.

Dual mesh representation. When we compute a VD of a trian-
gle mesh, we want to partition the vertices into disjoint sets. How-

Figure 3: Top: the primal and dual connectivities of a triangular
mesh. Bottom: regions on the primal mesh are represented as sets
of vertices, and the corresponding regions on the dual mesh are
composed by faces.

ever, Voronoi texels are defined as regions over the surface, mean-
ing that they should be submanifolds of M. By only considering
vertices, we likely end up having non-manifold geometries or non
well-defined boundaries.

We consider the polygonal mesh M̃ = (Ṽ , Ẽ, T̃ ) to be the dual
mesh ofM= (V,E,T ), built by placing a vertex at each face ofM
and forming a polygonal face for each triangle fan around a vertex
ofM. As shown in the example from Figure 3, dual meshes allow
us to define Voronoi texels by means of connected dual faces, mak-
ing them actual submanifolds of the original surface. Furthermore,
we can easily define boundaries between texels as paths made of
dual edges.

This construction has the positive side effect to ensure that every
VD is general. Indeed, the only place where three or more texels
can meet is a dual vertex. Since texels are made of dual faces (i.e.,
primal vertices), and the primal mesh is triangular, there is no dual
vertex where more than three faces can meet.

Given the correspondence between primal and dual geometric
elements, we can verify if a region is a closed 2-ball with Proposi-
tion 1 without explicitly constructing the dual mesh. Exploiting ef-
ficient data structures, like hash-maps and hash-sets, we can verify
the topology of each texel (or union of two or more texels) with a
single pass over vertices, edges and triangles. After the initial FPS,
we further add samples to enforce the flat union property: if two or
more adjacent texels do not form a closed 2-ball, we break the con-
nection adding samples at the Voronoi vertex or along the Voronoi
edge; if a texel is not a closed 2-ball, we add a sample along its
boundary to reduce its coverage.

3.2. Low-resolution matching

LetM andN be two triangular meshes, and let M̂ and N̂ be their
low-resolution counterparts computed with the algorithm presented
above (or any other alternative algorithm). Furthermore, let Φ̂ be a
basis for the functional space over M̂, and Ψ̂ a basis for the func-
tional space over N̂ . For example these bases can be the truncated
subset of the eigenvectors of the LBO as proposed in [OBCS∗12].
We assume to have some pipeline yielding a functional map C, such
that

Ψ̂ C = Π̂ Φ̂ , (3)
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Source shape OursLiu et al.

Figure 4: Top: remeshing and mapping of the original vertices with
the solution from Liu et al. [LGC∗23] and our pipeline. Bottom:
comparison of ground truth geodesic distances from multiple ver-
tices and extended with both methods.

where Π̂ : M̂ → N̂ is a correspondence between the vertices of
M̂ and the vertices of N̂ . The adopted functional maps solution
can be any of the available alternatives, ranging from the orig-
inal one [OBCS∗12] to the most recent [DCMO22]. In our ex-
periments, we consider two of the widely adopted solutions: con-
strained optimization with product preservation [NO17] and the it-
erative procedure ZoomOut [MRR∗19]. The first is representative
of the possible optimization strategies, while the second is proba-
bly the most efficient refinement technique for functional maps es-
timation. Both these methods have been efficiently and effectively
applied on meshes with a limited number of vertices (i.e., up to 10
thousands vertices), which is exactly the setting we are in after the
proposed remeshing step.

3.3. Extending the correspondence

To extend the basis from the remeshing to the original surface, we
need a mapping that transports scalar fields from the low-resolution
mesh M̂ to the high-resolution shape M. A possible solution
would be to map each triangle of M̂ to a geodesic triangle inM,
and then computing the geodesic barycentric coordinates of each
vertex inside the triangle [LGC∗23]. Unfortunately, this approach
is very costly, as it requires to compute exact geodesic paths onto
M [Rus10]. Instead, we approximate this mapping by projecting
each vertex ofM onto the closest surface point of M̂. Despite this
approach not being accurate in general, every triangle in M̂ cor-
responds to a geodesic triangle (homeomorphic to a disk) on M
with the same vertices. Furthermore, starting from a farthest point
sampling gives evenly spaced samples, mitigating the geometric
complexity of geodesic triangles.

A surface point of M̂ is either a vertex, or a weighted average
of two (if on an edge) or three vertices (if on a triangle). We build
a linear map UM ∈ Rm×s representing the projection of each ver-
tex vi ∈ M as a linear combination of at most three vertices in

M̂ (i.e., the vertices encoding the closest surface point). Figure 4
shows a comparison between our pipeline and the simplification
method proposed by Liu et al. [LGC∗23]. The top row shows the
different geometries produced by the two methods in reducing the
mesh size by 90% and how our mapping compares to the approxi-
mate geodesic barycentric coordinates. In the bottom row we com-
pare the two methods in approximating a multiple source geodesic
distance field, showing that they do not present appreciable differ-
ences. More discussion is provided in Appendix E.

Scalar functions can be evaluated at any surface point by inter-
polating the values at the vertices. Since every vertex ofM is as-
sociated to a point on the surface of M̂, we can use the linear map
UM for extending scalar functions from the s vertices of M̂ to the
m vertices ofM.

We extend the bases Φ̂ and Ψ̂ to the full-resolution meshes as
Φ = UMΦ̂ and Ψ = UN Ψ̂. Then, in a similar fashion as done in
Equation (3), we search for a correspondence Π :M→ N that
maps vertices ofM to vertices ofN as

UN Ψ̂ C = Ψ C = Π Φ = Π UM Φ̂ , (4)

where, for the sake of clarity, we explicitly write the equation in
terms of the bases Φ̂ and Ψ̂. Given the extended bases Φ and Ψ,
and the same functional map C estimated to solve Equation (3), we
obtain the correspondence Π via a nearest neighbor search in the
spectral space.

We notice that nearest neighbor algorithms become very slow
on large meshes, effectively becoming a possible bottleneck for the
pipeline. Our experiments presented in Figure 10 show that, to the
scope of this paper, this solution provides satisfying performance.
However, we acknowledge that establishing a relationship between
(3) and (4) could lead to a more efficient expression of Π in terms
of Π̂, UM, and UN . This avenue warrants future exploration.

4. Results

Our goal is to evaluate not only the matching accuracy of our
method but also its time performance. For this task, we test it
on datasets for dense correspondences, such as the SHREC19
dataset [MMR∗19] and the TOSCA dataset [BBK08]. We also in-
troduce a novel dataset, BadTOSCA, obtained by randomly alter-
ing the vertex positions of the TOSCA meshes, to ensure that our
method is stable even under circumstances where strong isometry
cannot be assumed†.

Our pipeline relies on an efficient remeshing algorithm that
can quickly and drastically reduce the size of a mesh by orders
of magnitude while still preserving the underlying geometry and
metric. In principle, any remeshing algorithm could be adopted
in our pipeline, as the map for extending scalar fields discussed
in Section 3.3 only requires having two input meshes. We com-
pare our solution against well-established isotropic and anisotropic
remeshing algorithms (respectively, IRM [HDD∗93, BPR∗06] and
ARM [NLG15]), as well as the scalable functional maps (SFM)

† Details on the dataset generation are provided in Appendix D.
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Figure 5: Left: Accuracy curves on the SHREC19 challenge pairs for the tested methods. We also consider ideal approaches where the initial
functional map for ZoomOut is given ground truth dashed lines). Right: Cumulative curves of the execution time for evaluated methods. For
all methods, we also consider the time required to run the remeshing or resampling step(s).

approach proposed by Magnet et al. [MO23], which produces a
subsampling of the vertices in place of a low-resolution mesh.

We implemented our remeshing algorithm in C++, using
Eigen [GJ∗10] and libigl [JP∗18], and the matching pipeline in
MATLAB.

4.1. Quality of matching

To evaluate our shape matching pipeline, we tested our method on
the SHREC19 dataset [MMR∗19]. We can use different shape cor-
respondence techniques to test the entire pipeline. In particular, we
compute the functional map on the low-resolution representation
using both the widely adopted approach with products preserva-
tion (FMaps) [NO17] and ZoomOut [MRR∗19]. We compare our
method with the same approaches on the full-resolution meshes,
as well as against SFM. For a fair comparison, we remesh all the
shapes to 3k vertices with all methods, as Magnet et al. [MO23]
state that this produces the best performance with SFM. To fur-
ther ease the alignment of the Laplacian spectra, we also post-
process the remeshed shapes (produced with IRM, ARM, and our
algorithm) to remove small disconnected components made of few
triangles before computing the extension map discussed in Sec-
tion 3.3. This post-processing step cannot be performed for SFM,
due to the nature of its sampling strategy. The benefits of this post-
processing will be discussed in Section 4.3.

We summarize the results of our experiment in Figure 5, where
we show the accuracy curves for all methods on the SHREC19
connectivity track benchmark, following the paradigm proposed by
Kim et al. [KLF11]. To prove the time efficiency of our pipeline,
we also measure the time taken by every method on each pair of
shapes in the benchmark (including the remeshing step), and we
show the cumulative curves of the execution times over the entire
dataset in a similar way with respect to the accuracy curves.

We see that all the low-resolution approaches provide better time
and quality performance than the full-resolution methods, as the
simpler geometry makes it easier and faster to align the Laplacian
eigenfunctions. ARM is the only exception, since the anisotropic

Method AGE (·10−2) ↓ AUC ↑
Ours (ZoomOut)* 2.40 95.12%

SFM* 2.46 95.22%
Ours (FMaps) 6.23 88.21%

Ours (ZoomOut) 5.87 88.82%
SFM 16.84 70.19%

ARM (ZoomOut) 41.59 30.34%
IRM (ZoomOut) 8.30 84.62%

FMaps 28.31 56.15%
ZoomOut 29.36 52.02%

Table 1: Average geodesic error and area under the accuracy curve
for each tested method on the SHREC19 challenge pairs. The top
rows (denoted by ∗) show the performance of our algorithm and
SFM under the assumption of having a ground truth functional map
for initializing ZoomOut.

remeshing produces many skew triangles and a singular Laplacian
matrix for all the shapes. Furthermore, our technique (with both the
FMaps and ZoomOut backend) outperforms SFM and achieves bet-
ter results than using the IRM remeshing strategy. This difference
can be better appreciated in Table 3, where we report the average
geodesic error (normalized with respect to the shape diameter) and
the area under the accuracy curves. In both Figure 5 and Table 3 we
have also considered the idealized scenario where our method with
ZoomOut as backend and SFM are initialized with a ground truth
functional map. In this case, the two approaches obtain comparable
results.

We also compare our method with the other approaches on the
TOSCA and BadTOSCA datasets, summarizing the results in Fig-
ure 6. In the figure, we show the accuracy curves for the tested
methods on both datasets, also providing the average geodesic error
normalized by the shape diameter. We see that under the favorable
and unrealistic conditions offered by TOSCA, where shapes of the
same class are almost perfectly isometric, SFM achieves the best
results. However, when we consider the slightly altered geometry
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Figure 6: Accuracy curves and average geodesic error on the TOSCA dataset (left) and the BadTOSCA dataset (right) for the tested methods.

Source
Ground
Truth

OursSFMZoomOut

1

Figure 7: Coordinate transfer between non-isometric shapes. The
coordinates are used to generate highly complex patterns, whose
sensitivity to the input enhances the transfer errors.

of BadTOSCA, SFM suffers a performance drop of about 50%,
while our method shows more stability.

A significant benefit of the functional map approach is its inde-
pendence from the difference in resolution between the source and
target shape. Transferring a function with functional maps yields
a much smoother and neat result than directly a point-wise corre-
spondence. In this regard, we test our method in transferring coor-
dinate functions between isometric and non-isometric shapes with
substantial differences in resolution and triangulation. In the ex-
ample from Figure 7 we generated a complex procedural fractal
pattern as a function of the coordinates [MBMR22]. This pattern
is very sensitive to the input, so even slight errors are highly en-
hanced. We see that SFM cannot precisely map the coordinates of
the source mesh, shifting around and distorting the details of the
pattern.

Furthermore, the example in Figure 8 shows that we can also deal
with inter-class function transfer with our pipeline, outperforming
SFM in a visual comparison. In the example, we also showcase
that we should not necessarily rely on the standard Laplacian ba-
sis as a backend. Instead of using ZoomOut to transfer functions
between the low-resolution meshes, we rely on the orthogonalized
eigenproducts basis introduced by Maggioli et al. [MMO∗21], ex-
tending it with the same technique described in Section 3.2.

Finally, to ensure that our method can scale to high-resolution

Source ZoomOut SFM
Ours

(ZoomOut)

Ours

(OrthoProds)

1

Figure 8: Inter-class coordinate transfer from the wolf model to
a cat and a dog. Our pipeline is not constrained by the standard
Laplacian basis and can be used with other approaches as well.

Source OursSFM

1

Figure 9: Comparison of function transfer between very high-
resolution models with SFM and our approach.

meshes, we tested it using two very high-resolution 3D scans of
real statues: a dancing faun counting ∼750k vertices and a warrior
from the temple of Aphaea counting∼3.5M vertices (see Figures 1
and 9). Since SFM can also deal with dense shapes, we compare its
results with the ones of our method. Figure 9 shows an example of
the transfer of a geodesic distance function. While our method can
faithfully transfer the function, SFM produces incoherent distances
(e.g., wrong isolines on the head and near the shoulder) and evident
artefacts (e.g., the wrong distance on the hand).
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Figure 10: Execution time (logarithmic scale on the y-axis) of dif-
ferent remeshing algorithms plotted against the number of vertices
of the input shape (x-axis). For SFM we show the time taken for
generating the sampling.

4.2. Scalable performance

In Section 4.1 we saw that general-purpose remeshing solutions
are not an optimal choice for the matching task. However, Lescoat
et al. [LLT∗20] provided a specialized mesh decimation algorithm
(SMD) that reduces the complexity of the mesh while still preserv-
ing the Laplacian eigenfunctions. Furthermore, Liu et al. [LGC∗23]
proposed an elegant solution for simplifying a shape based on in-
trinsic error metric (IEM), which also builds a map for extending
scalar functions using geodesic barycentric coordinates. We per-
form the evaluation on the SHREC19 dataset [MMR∗19], remesh-
ing the surfaces to 3k vertices with all the methods.

To achieve the desired scalability, the remeshing step in our
pipeline must be fast enough to maintain the improvement obtained
by reducing the size of the eigenproblem. In this regard, Figure 10
shows that our technique achieves better time performance than the
other remeshing algorithms and the sampling strategy of SFM. In
contrast, SMD and IEM are decimation algorithms that iteratively
reduce the mesh size, making them orders of magnitude slower
and unsuitable for large meshes. Moreover, SMD requires a pre-
computation of the Laplacian eigenbasis on the original surface to
guide the decimation process and preserve the spectrum, introduc-
ing additional time complexity.

4.3. Benefits of remeshing

In Section 4.1, we discussed how we remove small disconnected
components after the remeshing step. The example in Figure 11
shows a comparison of mapping between a low-resolution mesh
(Source), with less than 7k vertices, to a detailed mesh where eyes
are represented with two disconnected components, each composed
of 462 vertices out of the 27k of the entire mesh (∼2% of the total
vertices). This is enough geometry to attract energy at lower fre-
quencies, and when we try to align the first 20 eigenfunctions with
FMaps [NO17], the resulting functional map turns out to be mostly
noise. Initializing ZoomOut with such a map leads to meaningless

Source
Ground
Truth

ZoomOut SFM Ours

1
Ground truth Std. basis SFM basis Ours basis

1

Figure 11: Top row: coordinate transfer between a pair from
SHREC19 using ZoomOut on full-resolution meshes, SFM and our
approach. Bottom row: The ground truth 20× 20 functional map,
compared with the alignment computed with FMaps [NO17] from
the full Laplacian eigenbasis, the SFM extended basis and our ex-
tended basis.

correspondence, and SFM does not mitigate this issue, as it tries to
preserve the original spectrum as much as possible. In contrast, by
removing these components and mapping them to their closest sur-
face points, we introduce a small error in the final correspondence,
but at the same time, we ease the alignment of the initial eigenbases,
resulting in more accurate and meaningful mapping. This is evident
in the bottom row of Figure 11, where the ground truth functional
map presents a gap in the alignment of the eigenfunctions due to the
impossibility of mapping the disconnected eyes of the target shape
in any point of the source shape. Using the real eigenfunctions or
a close approximation yields an intense noise in the map, produc-
ing the meaningless mapping of ZoomOut and SFM. Instead, by
mapping the eyes to their nearest point on the head, we can mean-
ingfully align our extended basis.

5. Conclusions

We presented a new pipeline for scalable shape matching that re-
lies on a low-resolution representation to compute a functional map
between dense shapes efficiently. A core part of this pipeline is our
novel remeshing algorithm, which efficiently computes an intrinsic
Delaunay triangulation of uniform surface sampling. This proce-
dure is applied to reduce the computational cost of the functional
maps framework and make it efficient also on very dense meshes.
Furthermore, we use a fast and intuitive technique for extending
scalar functions from low-resolution meshes to their dense coun-
terparts, extending the computed correspondence to the original
very high-resolution shapes. Our experimental evaluation proved
that our procedure is effective on various types of shapes at differ-
ent resolutions, outperforming other state-of-the-art solutions and
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solving topological issues related to the alignment of the Laplacian
eigenbasis.

While using a triangulated mesh as a low-resolution represen-
tation could, in principle, be exploited with other types of shape-
matching pipelines, we only tested it within the functional maps
framework, using the Laplace-Beltrami eigenbasis or bases de-
rived from it. Studying the behaviour of our method with differ-
ent “backends”, as well as exploring the relationships between the
low-resolution and the high-resolution correspondences, would be
an interesting matter for future investigations.
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Appendix A: Proof of Theorem 2

Theorem 2. Let (M,dM) be a 2-dimensional metric space. If a
general VD {Pi}s

i=1 of M satisfies the FUP, it also satisfies the
closed ball property.

Proof. The first condition of the closed ball property trivially holds.

Suppose Pi ∩Pj is not empty, but it is not a closed 1-ball. Since
Pi ∪Pj is topologically flat, if their boundary is formed by two or
more connected components, none of these can be a closed loop.
But if the boundary between Pi and Pj is formed by two or more
topological segments, then Pi∪Pj must contain a hole, which con-
tradicts the second condition of the flat union property. Conversely,
if their boundary is formed by a single connected component which
is not a topological segment, then the boundary must form a loop
inside Pi ∪Pj. Such loop would either contain Pi or Pj, forming a
hole in the other texel and violating the first condition of the flat
union property.

Suppose Pi ∩Pj ∩Pk is not empty, but it is not a closed 0-ball.
Every connected component of this intersection cannot be more
than zero dimensional, so Pi, Pj, and Pk must meet at more than
one point. Since we proved that Pi ∩ Pj is a closed 1-ball, then
Pi ∩Pj ∩Pk must be formed by two points which are also the end-
points of Pi ∩Pj. A similar argument can be made for Pj ∩Pk and
Pk ∩ Pi. Since Pi ∪ Pj ∪ Pk is a closed 2-ball that contains three
curves incident on the same two points, then two of these curves
must form a closed loop containing the other one. Without loss of
generality, suppose Pi ∩Pj and Pi ∩Pk form a closed loop. Since
Pi is a closed 2-ball, then the region enclosed by this loop must be
Pi. But this region also contains the boundary between Pj and Pk,
which contradicts the fact that Pi, Pj, and Pk are Voronoi texels.
Hence, Pi∩Pj ∩Pk must be a closed 0-ball.

Appendix B: Proof of Proposition 1

Proposition 2. LetM = (V,E,F) be a manifold polygonal mesh.
The meshM is a closed 2-ball if and only if its Euler characteristic
χ = |V |− |E|+ |F| is equal to 1.

Proof. The Euler characteristic obeys to the equation χ = 2−2g−
B, where g is the genus of the surface and B is the number of bound-
ary components. We also know thatM is a closed 2-ball if and only
if g = 0 and B = 1, thus ifM is a closed 2-ball, we have χ = 1.

Suppose χ= 2−2g−B= 1, then B= 1−2g, where B,g are non-
negative integers. If g = 0, then B = 1, andM is a closed 2-ball.
Since g > 0 implies B < 0, there cannot be other valid solutions,
and hence χ = 1 implies thatM is a closed 2-ball.

Appendix C: Handling large triangles

In most cases, we wish to preserve any large planar faces appearing
in the original mesh, as they represent large planar regions which
should be preserved in the final triangulation. However, sometimes
these kind of faces could introduce distorted triangles and degener-
ate angles, and thus it becomes preferable to introduce extra trian-
gulation and removing them. For this task, we introduce a resam-
pling strategy which can be performed as a preprocessing step.
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Figure 12: Resampling scheme of the triangles, depending on the
number of split edges. Red: long edges, to be split. Green: added
connectivity.

Statistically, triangular meshes have triangle count ∼2 times the
number of vertices. Given the total area AM of the original shape
M, we can estimate the average triangle area for the output mesh
as AE ≈ AM/2s, with s the number of vertices of the remeshing. An
equilateral triangle of area AE has each side of length ρ=

√
2AE/

√
3,

so we split in half every edge with length greater than ρ and we
insert a new vertex in the midpoint.

We then split mesh triangles depending on the number of inci-
dent split edges. If the triangle contains no split edges, we leave
it as is. In case of a single split edge, we connect the midpoint to
the opposite vertex, forming two triangles. When we have two split
edges, we connect the midpoints to form a triangle and a quad.
Then, to mitigate the formation of ill-shaped triangles, we divide
the quad connecting the opposite vertices with the largest angle
sum. Finally, if all its edges are split, we connect the midpoints to
form four triangles. The process can then be iterated until no edges
are oversize. The four cases for splitting a triangle are depicted in
Figure 12.

Appendix D: BadTOSCA dataset

In the main manuscript, we introduced a new dataset for testing
our algorithm, which we referred to as BadTOSCA. This dataset
aims to introduce additional challenge to the well-known TOSCA
dataset [BBK08] by altering the geometry and breaking the strong
isometry between pairs of the same class. We recall the structure of
the TOSCA dataset:

• the dataset is subdivided into k collections C1, · · · ,Ck of shapes;
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Figure 13: Meshes from the TOSCA dataset and their altered counterparts in BadTOSCA.

• each class Ci contains s triangular meshesMi1 , · · · ,Mis repre-
senting non-rigid deformations of the same shape;

• every two shapes Mp,Mq belonging to the same class Ci are
near perfectly isometric, have the same number of vertices, the
same connectivity, and their correspondence Π is the identity
matrix.

To generate the dataset, we first alter every shape independently
from all the others. Given a shapeM = (V,E,T ), we generate an
altered shape M̂= (V̂ ,E,T ) by moving the position of the vertices,
but preserving the connectivity. This ensures that the overall geom-
etry is left unchanged, but at the same time that the strong isometry,
the bijective correspondence, and the isomorphic connectivity can-
not be exploited (see Figure 13 for a reference).

For each vertex v, we compute the set NT (v) of triangles incident
on v, and we select a random triangle t ∈ NT (v). We then compute
random barycentric coordinates λ(v) = (λ1(v),λ2(v),λ3(v)), and
place v on triangle t at λ(v). Said V ∈R|V |×3 the matrix of the ver-
tex positions ofM and V̂ ∈ R|V̂ |×3 the matrix of vertex positions
of M̂, we can then use the barycentric coordinates of the altered
vertices to build a sparse matrix U ∈ R|V̂ |×|V | such that V̂ = UV.

Given two meshesMi = (Vi,E,T ),M j = (V j,E,T ) belonging
to the same class, let M̂i = (V̂i,E,T ) and M̂ j = (V̂ j,E,T ) be the
corresponding altered meshes, and let Ui and U j be the mapping

of the vertices. By construction, we know that V̂i = UiVi. Further-
more, sinceMi andM j are near perfectly isometric, the product
U jVi gives us the same type of altering that generated M̂ j from
M j, but onto the geometry of Mi. Thus, for building the map-
ping Πi j between M̂i and M̂ j we apply a nearest neighbor search
between UiVi and U jVi.

Appendix E: Closest surface point mapping

Despite the simplicity of the method, projecting onto the closest
surface point and using barycentric coordinates to interpolate val-
ues onto the original surface proves to be a valid solution, as shown
by the results on the main manuscript.

We highlight that our method can compete with the intrinsic sim-
plification method proposed by Liu et al. [LGC∗23] also in other
settings. Figure 14 shows an example of how geodesic distances
can be computed in the low-resolution surface (10k vertices for
both methods, shown in the first column) and then extended to
the high-resolution mesh (∼120k vertices). For this experiment,
we sample k = 30 source points p1, . . . , pk from the surface and
compute the exact geodesic distances dgt(pi,v) from each source
pi to every vertex v of the surface, also considering the minimum
distance from the sample set minpi(dgt(pi,v)) (last column). We
then do the same for the remeshed surface, using as source the
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Figure 14: Comparison between our method (last row) and IEM [LGC∗23] (second row) extending geodesic distances to the high-resolution
surface. The top row shows the ground truth geodesics.

Point Ours IEM
p1 1.81 1.80
p2 1.54 0.72
p3 1.62 0.79
p4 1.04 0.48
p5 1.05 0.59
p6 1.44 0.70
p7 0.95 0.39
p8 1.35 0.88
p9 1.28 0.49
p10 1.04 0.60
p11 1.25 1.04
p12 2.37 0.77
p13 1.93 1.11
p14 1.10 0.80
p15 0.84 0.49

Point Ours IEM
p16 1.50 0.56
p17 1.96 0.51
p18 1.29 0.46
p19 1.79 1.54
p20 1.91 2.32
p21 1.94 0.44
p22 1.72 0.79
p23 1.13 0.61
p24 1.08 0.52
p25 1.03 1.48
p26 1.05 1.61
p27 0.74 0.73
p28 1.24 2.31
p29 1.98 0.57
p30 1.74 1.95

Min. dist 2.61 3.86

Table 2: Normalized error of approximated geodesics from each
source point for both our method and IEM.

points closest to the original samples, and extending the distance
functions to the full-resolution shape using the barycentric coordi-
nates of the closest surface point in our case, and the approximated
geodesic barycentric coordinates for IEM, respectively producing
approximated geodesic distances dours(pi,v) and dIEM(pi,v).

For evaluating the error, for each pi we compute the differences

eours(pi,v) =
dgt(pi,v)−dours(pi,v)

maxv(dgt(pi,v))
,

eintrinsic(pi,v) =
dgt(pi,v)−dintrinsic(pi,v)

maxv(dgt(pi,v))
,

(5)

which are normalized by maximum distance to pi, to ensure that
each function acts at the same scale. Then, we aggregate the error
by computing the norms ∥eours(pi, ·)∥M and ∥eintrinsic(pi, ·)∥M,
where ∥ f∥2

M =
∫
M f 2(x) dx.

In contrast to our method, IEM produces a mapping that ap-
proximates geodesic barycentric coordinates during the simplifica-
tion. However, the geodesic paths between adjacent vertices in the
remeshed surface are deformed to straight lines, negatively affect-
ing the approximation of the full-resolution geodesics and produc-
ing results that are comparable to ours. The results from Table 2
shows that, while IEM obtains better results most of the time, the
error is on the same scale as our solution. Furthermore, while IEM
took 25.796 seconds for remeshing the surface and producing the
mapping, our algorithm remeshed the surface in 1.109 seconds and
produced the map in 638 milliseconds, totalling 1.747 seconds and
achieving a 14.75 speedup.
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Method AGE (·10−2) ↓ AUC ↑
Ours (ZoomOut)* 2.40 95.12%

SFM* 2.46 95.22%
Ours (FMaps) 6.23 88.21%

Ours (ZoomOut) 5.87 88.82%
FP (FMaps) 9.11 83.19%

FP (ZoomOut) 7.90 85.29%
SFM 16.84 70.19%

ARM (ZoomOut) 41.59 30.34%
IRM (ZoomOut) 8.30 84.62%

FMaps 28.31 56.15%
ZoomOut 29.36 52.02%

Table 3: Average geodesic error and area under the accuracy curve
for each tested method on the SHREC19 challenge pairs. The top
rows (denoted by ∗) show the performance of our algorithm and
SFM under the assumption of having a ground truth functional map
for initializing ZoomOut.

Appendix F: Flat Union Property

Dual mesh representation algorithm

As discussed in the main text, enforcing the Closed Ball Property is
more challenging than enforcing the Flat Union Property. Indeed,
the Flat Union Property only requires to check that certain regions
are topologically equivalent to 2-dimensional disks without holes,
which can be easily verified by exploiting Proposition 2. The de-
tailed procedure is given in Algorithm 2.

Comparison with Front Propagation

The refinement step presented in Algorithm 2 is required on top
of any sampling to ensure the resulting Voronoi partitioning is the
dual of a proper Intrinsic Delaunay Triangulation. In our method,
we employ the Front Propagation algorithm (FP) introduced by
Peyré et al. [PC06] to obtain an initial sampling, slightly modified
for improving the computational complexity. As discussed in the
original paper, the FP algorithm does not provide any guarantee of
manifoldness and equivalent topology as the input. In a functional
maps setting, this undesirable feature can introduce noise and er-
ror in computing the correspondence. For supporting our claim,
we present in Table 3 another version of Table 1 from the main
manuscript, where two additional rows report the performance of
the FP algorithm on the SHREC19 dataset. While proving its ef-
fectiveness in the task, the FP algorithm achieves worse results that
our method using both FMaps and ZoomOut. By adding the ex-
tra refinement step and guaranteeing manifoldness and topological
equivalence, we can reduce the Average Geodesic Error (AGE) by
about 30%

Algorithm 2 Flat Union Property verification.
1: procedure FUPCHECK(M= (V,E,T ), P)
2: // R1[i] is the i-th Voronoi region
3: R1← map of Voronoi regions
4: // R2[i, j] = R1[i]∪R1[ j], R3[i, j,k] = R1[i]∪R1[ j]∪R1[k]
5: R2← map of pairs of adjacent Voronoi regions
6: R3← map of triplets of adjacent Voronoi regions
7: // R[i] contains elements of R1,R2,R3 containing R1[i]
8: R← map of containing regions
9: // Iterate over triangles to build regions and adjacencies

10: for t = (t1, t2, t3) ∈ T do
11: for vertex v ∈ t do
12: R1[P[v]]← empty region
13: R[P[v]].insert(R1[P[v]])
14: end for
15: for edge e = (e1,e2) ∈ t do
16: R2[P[e1],P[e2]]← empty region
17: R[P[e1]].insert(R2[P[e1],P[e2]])
18: R[P[e2]].insert(R2[P[e1],P[e2]])
19: end for
20: R3[P[t1],P[t2],P[t3]]← empty region
21: R[P[t1]].insert(R3[P[t1],P[t2],P[t3]])
22: R[P[t2]].insert(R3[P[t1],P[t2],P[t3]])
23: R[P[t3]].insert(R3[P[t1],P[t2],P[t3]])
24: end for
25: // Each vertex corresponds to a dual face in the regions
26: for v ∈V do
27: for r ∈ R[P[v]] do
28: r.add_face()
29: end for
30: end for
31: // Each edge corresponds to a dual edge in the regions
32: for e ∈ E do
33: for distinct vertex v ∈ e do
34: for r ∈ R[P[v]] do
35: r.add_edge()
36: end for
37: end for
38: end for
39: // Each triangle corresponds to a dual vertex in the regions
40: for t ∈ T do
41: for distinct vertex v ∈ t do
42: for r ∈ R[P[v]] do
43: r.add_vertex()
44: end for
45: end for
46: end for
47: // Exploit Proposition 2
48: for r ∈ R1∪R2∪R3 do
49: ξ ← r.num_vertices() − r.num_edges() +

r.num_faces()
50: if ξ = 1 then
51: Mark r as closed 2-ball
52: end if
53: end for
54: end procedure


