
Pacific Graphics 2022
N. Umetani, E. Vouga, and C. Wojtan
(Guest Editors)

Volume 40 (2021), Number 7

MoMaS: Mold Manifold Simulation for real-time procedural
texturing

Supplementary Materials

F. Maggioli1 , R. Marin1 , S. Melzi2 and E. Rodolà1

1Sapienza - University of Rome, Italy
2Università di Milano Bicocca, Italy

In this document we provide additional information and more
detailed insights on the experimental results presented in the main
paper. Moreover, we give additional details about our implementa-
tion of the algorithm for moving a particle over a surface.

1. Particle Motion Over a Surface

Algorithm 1 summarizes the entire process. The procedure TAN-
GENTSUBSTEP is given a point p in texture space and the triangle
t where p lies. It computes the movement over the tangent space
of the mesh along some vector ∆p. The vector is still defined in
texture space, and thus must be rescaled according to the local met-
ric tensor g(t) (Line 3). The final position after the movement is
converted to barycentric coordinates to determine if the border of
the triangle has been crossed (Lines 5-10). The adjacent triangle w
closest to the final point is selected and the point is projected on it
(Lines 12 and 13). Finally, the coordinates are converted to 2D via
barycentric coordinates (Lines 15 and 16). To handle meshes with
boundaries, it is sufficient to identify if the agent crossed a bound-
ary edge (i.e. there is no adjacent triangle on that edge). If this is
the case, we make the agent bounce on the edge.

The vectors nτ and cτ are, respectively, the normal and the
barycenter of a triangle τ, while Adj(τ) is the set of its adjacent
triangles. The matrices Tτ and Lτ are defined for each triangle τ as

Tτ =
(
rτ,1− rτ,3 rτ,2− rτ,3

)
∈ R2×2

Lτ =
(
vτ,1 vτ,2 vτ,3

)
∈ R3×3

(1)

where rτ,i are the coordinates of the vertices of τ in texture space
and vτ,i are the coordinates of the vertices of τ in 3D space. The
matrix Tτ is the conversion matrix from barycentric to edge coor-
dinates and is such that Tτλ

′ = p− rτ,3, given that λ
′ are the first

two components of the barycentric coordinates of p. Matrix Lτ is
the conversion matrix from barycentric to Cartesian coordinates.
Usually, it is defined as a rectangular matrix in R4×3, since it must
have a row of ones in order to ensure the point is inside the trian-
gle. In our case, we need to allow points to move outside triangles,
and thus we remove that row. As a side effect, we can move back
and forth between Cartesian and barycentric coordinates by invert-

ing Lτ, which saves much computation with respect to the classic
area-based method.

The procedure TANGENTSTEP iterates the process multiple
times to continuously determine the new position and direction in
texture space, as well as the current triangle. The number of sub-
steps N is some fixed constant depending on the mesh resolution
and it is used to determine the length of the sub-step (Line 3). At
each iteration, the algorithm moves the agent by a small step (Line
6) and then uses a slightly larger step to determine the next direc-
tion (Line 8). The direction is then normalized and rescaled to a
proper length (Line 9). The call to TANGENTSUBSTEP also has the
job of determining the next direction and the triangle of the next
position to pass them to the next iteration.

2. Area Coverage and Parameters Tuning

Figure 1 accompanies Figure 8 from the main paper. Differently
from the evaporation rate, the movement speed of the agents and
their angle of vision seems to not affect the area coverage. Even
if changing these parameters produces very different patterns, the
portion of surface area covered by the pheromone trace does not
vary. The plots for the agents’ turn speed and the sensors’ distance
behave similarly.

Figure 10 in the main paper shows an interpolation between sim-
ulation parameters, in order to give an insight on how a single pa-
rameter affects the behavior of the resulting pattern. Figure 2 and
Figure 3 show a more detailed overview of the parameters’ inter-
polations. Figure 2 accompanies Figure 10 from the main paper,
whereas Figure 3 analyzes the effect of changing the vision distance
and angle parameters. In both cases, the parameters are linearly in-
terpolated using the ranges in Table 1 from the main manuscript.
The turning speed of the agents does not seem to affect the pat-
tern over the surface. Instead, we observed a correlation between
turning speed and how fast the pattern changes during its evolu-
tion. Moreover, we notice that changing the movement speed and
the evaporation rate has a higher visual impact than changing the
sensors’ parameters. A small change in the latter is visually more
subtle.

© 2022 The Author(s)
Computer Graphics Forum © 2022 The Eurographics Association and John
Wiley & Sons Ltd. Published by John Wiley & Sons Ltd.

https://orcid.org/0000-0001-8008-8468
https://orcid.org/0000-0003-2392-4612
https://orcid.org/0000-0003-2790-9591
https://orcid.org/0000-0003-0091-7241

F. Maggioli, R. Marin, S. Melzi & E. Rodolà / MoMaS - Supplementary Materials

Algorithm 1 Step in the tangent space of a mesh.

1: procedure TANGENTSUBSTEP(p, ∆p, t)
2: // Rescale the displacement vector
3: ∆p← ∆p√

(∆p)⊤g(t)∆p
4: // Convert to barycentric coordinates
5: q← p+∆p
6: λ← T−1

t (q− rt,3)
7: λ3← 1−λ1−λ2
8: if λ is inside t then
9: return (t, p+∆p)

10: end if
11: // Search for the nearest adjacent triangle
12: w← argminτ∈Adj(t) {|⟨nτ, q− cτ⟩|}
13: q← q−⟨nw, q− cw⟩nw
14: // Return final texture coordinates and the new triangle
15: λ← L−1

w q
16: return

(
w, λ1rw,1 +λ2rw,2 +λ3rw,3

)
17: end procedure

1: procedure TANGENTSTEP(p, ∆p, t)
2: p′← p
3: ∆p′← ∆p

N
4: for i← 1 to N do
5: // Compute the final position
6:

(
w, p′′

)
← TANGENTSUBSTEP(p′, ∆p′, t)

7: // Compute the new direction
8:

(
−, ∆p′′

)
← TANGENTSUBSTEP(p′, ∆p′, t)

9: ∆p′←
∥∥∆p′

∥∥ ∆p′′−p′′

∥∆p′′−p′′∥
10: p′← p′′

11: t← w
12: end for
13: return

(
t, p′, atan2

(
∆p′

))
14: end procedure

0.5 1.0 1.5 2.0
0

0.2

0.4

Movement Speed

Coverage
Presence

20 30 40 50 60 70 80
0

0.2

0.4

Vision Angle (◦)

Coverage
Presence

Figure 1: Coverage and presence at varying of the movement speed
and the vision angle. It is evident that the two parameters does not
affect significantly the area covered by the pheromone.

© 2022 The Author(s)
Computer Graphics Forum © 2022 The Eurographics Association and John Wiley & Sons Ltd.

F. Maggioli, R. Marin, S. Melzi & E. Rodolà / MoMaS - Supplementary Materials

Figure 2: More samples for the patterns resulting from the interpolation of the simulation parameters regulating the agents’ movement speed
and the pheromone’s evaporation rate. Refer to Figure 10 from the main article.

© 2022 The Author(s)
Computer Graphics Forum © 2022 The Eurographics Association and John Wiley & Sons Ltd.

F. Maggioli, R. Marin, S. Melzi & E. Rodolà / MoMaS - Supplementary Materials

Figure 3: More samples for the patterns resulting from the interpolation of the simulation parameters regulating the sensor angle and
distance.

© 2022 The Author(s)
Computer Graphics Forum © 2022 The Eurographics Association and John Wiley & Sons Ltd.

F. Maggioli, R. Marin, S. Melzi & E. Rodolà / MoMaS - Supplementary Materials

Figure 4: The textures used as a base for the materials shown in
Figure 11 of the main article.

3. Patterns for materials

Figure 11 in the main paper shows three examples of different pat-
terns that can arise from the slime mold algorithm on surfaces by
tuning the simulation parameters. The materials used for the exam-
ples are fairly complex, and they come from the mixing of different
shaders. However, the visible patterns are the result of a slime mold
evolution, and we show them in Figure 4. The top texture has been
used as a filter, for mixing two shaders and produce lava rivers on a
rock, and as a displacement map for enhancing the details. We did
the same for the bottom texture when producing the moss material
over the bark. The central texture has been used as an inverse bump
map on a metallic material to produce scratches and engravings.

Tables 2, 3 and 4 from the main paper summarize quantitative
results on the algorithm’s performance. The results are averaged
over a sample of triangle meshes with various resolutions. We show
the sample of 10 meshes used for these experiments in Figure 5 and
we summarize their statistics in Table 1.

© 2022 The Author(s)
Computer Graphics Forum © 2022 The Eurographics Association and John Wiley & Sons Ltd.

F. Maggioli, R. Marin, S. Melzi & E. Rodolà / MoMaS - Supplementary Materials

Figure 5: The set of meshes used for testing performance.

mesh num. verts num. edges num. tris
bunny stripes 18k 55k 37k

bunny 35k 104k 69k
dragon 32k 95k 63k

gargoyle 20k 59k 39k
torus 2k 7k 5k

mesh num. verts num. edges num. tris
sphere 32k 98k 65k

owl 39k 118k 79k
cat 64k 193k 129k

fertility 10k 30k 20k
roman bust 14k 42k 28k

Table 1: Statistics of the sample meshes shown in Figure 5.

© 2022 The Author(s)
Computer Graphics Forum © 2022 The Eurographics Association and John Wiley & Sons Ltd.

