
Pacific Graphics 2022
N. Umetani, E. Vouga, and C. Wojtan
(Guest Editors)

Volume 40 (2021), Number 7

MoMaS: Mold Manifold Simulation for real-time procedural
texturing

F. Maggioli1 , R. Marin1 , S. Melzi2 and E. Rodolà1

1Sapienza - University of Rome, Italy
2Università di Milano Bicocca, Italy

Figure 1: Different materials generated from the simulation of our slime approach at a certain frame: marble and wooden grain (left and
right respectively), or golden web on a glass structure (middle). Look at supplementary video for an animated visualization of the pattern
evolution.

Abstract
The slime mold algorithm has recently been under the spotlight thanks to its compelling properties studied across many dis-
ciplines like biology, computation theory, and artificial intelligence. However, existing implementations act only on planar
surfaces, and no adaptation to arbitrary surfaces is available. Inspired by this gap, we propose a novel characterization of the
mold algorithm to work on arbitrary curved surfaces. Our algorithm is easily parallelizable on GPUs and allows to model the
evolution of millions of agents in real-time over surface meshes with several thousand triangles, while keeping the simplicity
proper of the slime paradigm. We perform a comprehensive set of experiments, providing insights on stability, behavior, and
sensibility to various design choices. We characterize a broad collection of behaviors with a limited set of controllable and
interpretable parameters, enabling a novel family of heterogeneous and high-quality procedural textures. The appearance and
complexity of these patterns are well-suited to diverse materials and scopes, and we add another layer of generalization by
allowing different mold species to compete and interact in parallel.

Keywords: Procedural texturing, animated texture, slime mould, GPU algorithm

CCS Concepts
• Computing methodologies → Texturing; • Theory of computation → Parallel algorithms; • Mathematics of computing
→ Geometric topology;

© 2022 The Author(s)
Computer Graphics Forum © 2022 The Eurographics Association and John
Wiley & Sons Ltd. Published by John Wiley & Sons Ltd.

https://orcid.org/0000-0001-8008-8468
https://orcid.org/0000-0003-2392-4612
https://orcid.org/0000-0003-2790-9591
https://orcid.org/0000-0003-0091-7241


F. Maggioli, R. Marin, S. Melzi & E. Rodolà / MoMaS: Mold Manifold Simulation

Figure 2: Visualization of the pheromone trace in a slime mold
simulation. The simulation involves 1M agents and takes place on
a bounded flat region.

1. Introduction

In different disciplines, the interest in biological evolutive systems
has grown in recent years. Biology and chemistry scholars and,
more recently also bioinformatics, artificial intelligence, and com-
putation theory researchers are focusing on such complex systems.
More specifically, systems that can produce a consistent global be-
havior by a few local rules are compelling due to their simplicity
but powerful expressive capabilities. Slime mold systems are in-
cluded in this family [Jon10]. Biological mold organisms propagate
following pheromones attraction – from a computer scientist’s per-
spective, perfectly fitting the divide-and-conquer paradigm. These
properties have motivated researchers to simulate their evolution,
exploiting modern computational capabilities to explore and inves-
tigate their properties. Among the available solutions, no method
offers an implementation on arbitrary surfaces to the best of our
knowledge. We believe this is not due to a lack of interest in non-
Euclidean domains, but rather because these dynamic simulations
on curved surfaces require a thorough background in differential
geometry, not common in the biological community.

From a Computer Graphics perspective, producing complex pat-
terns over a surface belongs to the procedural texturing domain.
Despite the increasing availability of computational power and ad-
vances in geometry processing, texture design is still a human-
centered and time-consuming task for the most. The growing
amount and quality of geometrical assets urge the generation of
realistic synthetic textures, while guaranteeing the quality and effi-
ciency required by the entertainment industry.

In this paper, we present a high-quality, real-time implementa-
tion of a slime mold algorithm for arbitrary surfaces with poten-
tially millions of agents running in parallel. We design it led by
simplicity, efficiency, and generality principles. We introduce only
the necessary technicalities, accepting approximations that keep the
method simple but are not visually harmful to the final quality. Our
method entirely takes place over the surface and offers a set of pa-
rameters that artists can easily interpret, so as to produce various
distinguishable patterns. These can be used for modeling different
materials, as shown in Figure 1. We further show how to constrain

A

f
rl

A

f
rl

f
rl

A

Figure 3: The behavior of a slime agent A. The agent samples
from three sensors in front of it (left l, right r, and forward f )
and determines the next direction by choosing the one with highest
pheromone concentration (darker red). When leaving a location,
the agent releases pheromone.

the mold evolution to specific regions by defining repulsion / at-
traction areas.

Our contribution can be summarized as follows:

• we provide the first slime mold algorithm for surfaces, with an
analysis of its behavior; we show that it is predictable, and re-
spects the expected properties of this kind of organisms;

• we define a new family of patterns for procedural texturing that
is interpretable, controllable and admitting path constraints in the
pattern evolution;

• we release a light-speed implementation that scales well at dif-
ferent texture resolutions, number of agents, and mesh resolu-
tion, opening to real-time video applications and massive texture
generation.

1.1. Related work and background

Slime mold simulation The evolution of biological patterns is a
vast research area in biology, and it often produces interesting vi-
sualizations that can also be used in movies and generative art.
A famous example of pattern formation is the evolution of the
Physarum Polycephalum, also known as slime mold. The algo-
rithm first presented in [Jon10] produces complex patterns like the
one shown in Figure 2. In recent years, the slime mold simulation
has become popular because of its large area of application, which
covers cognition, optimization, computation and machine learn-
ing [VCM∗18, BA17, EIZO20, LCW∗20, ABMC∗21]. The slime
mold algorithm is also starting to be used in generative art [MF21]
and visualization techniques [EBPF20]. The algorithm for simulat-
ing slime molds has proven to be so valuable that some researchers
are starting to integrate it in larger pipelines to achieve compelling
results [ZGS20, ABCM20].

Slime simulation falls under the category of systems that can
produce complex behaviors from a set of simple rules, like
cellular automata simulation [CD98] and reaction-diffusion sys-
tems [WK91]. The rules of the system can be summarized as fol-
lows:

• A set of agents lives in a closed space where they can move
freely;

• Each agent releases a pheromone trace that diffuses and evapo-
rates over time;

• Each agent tries to follow the pheromone trace in its field of view.

© 2022 The Author(s)
Computer Graphics Forum © 2022 The Eurographics Association and John Wiley & Sons Ltd.



F. Maggioli, R. Marin, S. Melzi & E. Rodolà / MoMaS: Mold Manifold Simulation

Figure 3 summarizes how agents act during an iteration. Each
agent samples three regions in front of it at an angle (forward, left,
or right sensor). The region with the most pheromone traces deter-
mines the steering direction of the agent. While moving, the agent
releases more pheromone, which in turn diffuses locally and evap-
orates over time. The simulation can be tuned according to several
parameters affecting the agents and the ambient.

Despite the increasing interest in this argument, the research in
this direction has been limited to tuning and optimizing the slime
mold algorithm, or to its application in different areas.

Procedural texturing The main works in this context are devoted
to procedural generation of height maps for landscapes [LN03,
Ols04,Par14], patterns for planar surfaces [WK91], 3D noise func-
tions [CD05, Har01] or mixes of other textures [EMP∗03]. Other
works have proposed to use procedural texturing for vector field vi-
sualization [BK08] or the representation of complex repetitive ge-
ometries [Ney95], but still, these works are limited to flat domains.
Texture synthesis on surfaces has been first addressed in [WL01],
and during the years the research greatly advanced; see [WLKT09]
for an extensive survey. However, the works in this area mainly
exploit example-based methods, adapting them to curved domains
[LH06], or they are limited to simple patterns [KCPS15]. The only
few exceptions are simulation based approaches [Tur91, Sta03],
which makes them similar in spirit to our method. Only recently,
some works have shown procedural generation of complex pat-
terns directly on surfaces [NPP21, FPSG21], but these works are
limited to recursive structures or repetitive patterns and do not ex-
plore other possibilities. Another work following a similar fash-
ion is [MNPP21], where the authors propose a method for drawing
Bézier curves on manifold meshes. Still, such curves require a set
of input points from the user, which is unfeasible for creating large
and complex patterns.

Riemannian geometry In the continuous setting, we represent
a 3D shape as a compact Riemannian surface M embedded in
R3. We briefly recap some mathematical preliminaries, and refer
to [Cha06, dC16] for further details. We denote TxM the tangent
plane at a point x ∈M. The tangent plane gives a linear approx-
imation of the surfaceM locally around the point x. The tangent
bundle TM := ∪x∈ MTxM is the disjoint union of all the tangent
planes. On each tangent plane we define an inner product gx(·, ·),
uniquely determined by a 2×2 matrix gx called metric tensor. The
metric tensor determines the length distortion of a vector v in R2

when mapped to TxM. The actual length of v in TxM is given by
∥v∥g =

√
v⊤gv.

A curve onM consists of a diffeomorphism γ : (−1,1) ∈ R→
M. Given a local chart ϕ, the differential d

dt (ϕ◦ γ) ∈ TxM rep-
resents the direction of the infinitesimal movement of a point (an
agent in this paper) along the curve γ at x = γ(0). Thus, the tan-
gent plane contains the direction of the infinitesimal movement of
an agent moving on the surface. The differential of a curve is inde-
pendent on the local chart [dC16,MSNN01]. In the discrete setting,
we approximate the manifoldM as a triangle mesh with n vertices,
whose coordinates are stored in a matrix V ∈ Rn×3. The edges be-
tween them define the triangular faces, the union of which approxi-
mates the continuous surface. Tangent planes, tangent bundles, and

Figure 4: Effect of sub-step subdivision on the slime mold simu-
lation. We use the same simulation parameters in all three cases,
but vary the number of sub-steps. Left to right: single step, 10 sub-
steps, 100 sub-steps.

differential constructions have a discrete definition for triangular
meshes; we refer to [CdGDS13] for a complete description.

2. Method

In our setting, an agent A is a particle on M that moves over
the surface following slime simulation rules. We require that our
method: i) works on general meshes and topologies; ii) allows A to
move on arbitrary paths in real time; iii) guarantees numerical sta-
bility. This section provides a detailed description of how we define
our method to achieve such desiderata.

2.1. Movement over the surface

p

p+∆p

p′
The motion of a particle over
a surface is a well-known prob-
lem. A widely used solution
is triangle unfolding [SSC19,
SGC21], but to keep the imple-
mentation simple we decide to approximate the path by moving the
particle in small steps and reprojecting it on the surface.

Given the initial position p of A, let t be the triangle that contains
p, and let ∆p be the vector encoding a forward step. We split ∆p into
smaller sub-steps; at each sub-step, we re-project A’s position onto
the surface. To ease the projection computation, we consider only
the triangle t′ that is the nearest to p+∆p and incident to t (see in-
set). This movement parcellation limits inconsistency produced by
edge crossing and guarantees we cannot cover more than one tri-
angle at a time. Alternatively, one could compute exactly when an
edge has been crossed and split the movement perfectly between
the incident triangles. However, we argue that our approach does
not require any check, and the approximation produced is negligi-
ble. Our sub-step strategy is crucial, as can be seen in Figure 4;
the leftmost owl does not use any sub-step subdivision, resulting
in an unrecognizable pattern. While increasing the number of sub-
steps produces a more precise approximation of the motion, we
stress that the resulting path does not converge to a geodesic. In

© 2022 The Author(s)
Computer Graphics Forum © 2022 The Eurographics Association and John Wiley & Sons Ltd.



F. Maggioli, R. Marin, S. Melzi & E. Rodolà / MoMaS: Mold Manifold Simulation

Figure 5: Comparison between two pheromone traces on a torus
with and without length rescaling. On the left, the agent movements
in texture space are of the same size, producing a pattern with in-
consistent lengths in 3D. On the right, lengths in texture space are
rescaled according to the metric, generating a more uniform pat-
tern in 3D. We represent the metric ∥·∥g as a colormap growing
from dark red to white.

fact, slime agents move along a constant direction in the paramet-
ric space, which does not necessarily coincide as moving along a
geodesic.

2.2. Length rescaling

In practice, we operate in texture space and represent the posi-
tion of each agent by two coordinates, and its direction as a sin-
gle scalar (i.e., the steering angle). The pheromone is encoded as
color. If the agent does not cross the border of a triangle during a
step, the change in position is easily computed by summing two 2-
dimensional vectors. However, this choice also requires taking into
account the metric distortion induced by the UV mapping.

To guarantee that a vector a in texture space has uniform 3D
length on the mesh domain, we divide it by the norm ∥a∥g =√

a⊤ga, where g(t) is the discrete metric tensor at triangle t. Since
the latter depends entirely on the triangle t, it can be pre-computed
for all triangles at initialization. In Figure 5, we depict an example
of this correction in texture space and 3D space.

2.3. Mold evolution

Our mold evolution process follows the spirit of [Jon10]; we sum-
marize it in Algorithm 1. We pre-compute the set of adjacent tri-
angles and the metric tensor at each triangle (Lines 2-6). Then, we
simulate a certain number of steps. At each step, all the agents sense

Algorithm 1 Slime mold on surfaces.

1: procedure MOMAS(M, h f , ∆h)
2: for all triangle t do
3: // Pre-compute adjacency and metric tensor
4: Compute Adj(t)
5: Compute g(t)
6: end for
7: h← 0
8: while h < h f do
9: for all agent a do

10: // Sense the pheromone trace
11: for θ ∈ {−ϑs, 0, ϑs} do
12: ∆s← (cos(a.θ+θ), sin(a.θ+θ))
13: (sθ,−,−)← TANGENTSTEP(a.p, δs∆s, a.t)
14: Pθ← Pheromone(sθ)
15: end for
16: // Determine next direction and move the agent
17: θ

∗← argmaxθ∈{−ϑs, 0, ϑs} {Pθ}
18: a.θ← a.θ+ϑaθ

∗

19: ∆p← (cos(a.θ), sin(a.θ))
20: (a.p,a.t,a.θ)← TANGENTSTEP(a.p, δa∆p, a.t)
21: // Release pheromone
22: Pheromone(a.p)← 1
23: end for
24: // Apply global pheromone diffusion and evaporation
25: Blur the texture Pheromone
26: Pheromone←max(Pheromone− εd ,0)
27: h← h+∆h
28: end while
29: end procedure

Figure 6: Evolution of a 3-species slime mold over a surface.
Agents start from an initial region and diffuse over the entire mesh.

three positions in front of them by sampling the texture Pheromone
(Lines 11-15). The sensor placement depends on two parameters:
the sensor distance δs and the sensor angle ϑs. The location with
the highest quantity of pheromone attracts the agent (Line 17). The
agent then turns to that direction with turn speed ϑa and moves
along the new direction with velocity δa (Lines 18 to 20). Some ran-
domness can be added to the agent’s steering for adding extra dy-
namism and random changes to the pattern. Here, TANGENTSTEP

is any procedure that moves a point over the tangent space and re-
turns the final position, the triangle and the direction aligned with
the movement. For additional details about our implementation, we

© 2022 The Author(s)
Computer Graphics Forum © 2022 The Eurographics Association and John Wiley & Sons Ltd.



F. Maggioli, R. Marin, S. Melzi & E. Rodolà / MoMaS: Mold Manifold Simulation

Figure 7: An example of simulation with multiple species, repelling
each other. The pheromone trace of each species is stored in a dif-
ferent channel of the texture and is represented with a different
color.

remand to the supplementary materials. and the source code†. Once
the agents finish releasing their pheromone in their new position on
the texture Pheromone (Line 22), we apply a blurring algorithm to
diffuse the pheromone and remove a small quantity that evaporates
with velocity εd (Lines 25 and 26). The parameters introduced in
the last lines characterize the behavior and the obtained pattern, and
we analyze them in detail in Section 3.3.

As a final note, to keep our implementation simple and GPU-
friendly, we accomplish the blurring step (Line 25) with a standard
Gaussian blur directly on the texture. While this can in principle
generate visible seams, it allows us to handle very high-resolution
textures in real time, and the artifacts on texture seams are not vi-
sually noticeable as we demonstrate in our experiments.

2.4. Agent implementation

Agents are represented by a data structure with the following fields:

• p: position of the agent in texture space;
• θ: direction angle in texture space;
• t: triangle containing point p.

Each agent contains only four values, making the representation
memory-efficient. Despite the triangle being a piece of redundant
information (it could be inferred by p), computing it at each step
becomes unfeasible in terms of performance.

Since the agents act independently, we implement their behavior
on GPU, achieving real-time performance on the simulation.

2.5. Multiple Species, Obstacles and Attractors

The slime mold algorithm allows for further generalization, in-
cluding multiple species of agents; see Figure 6. Each different
species releases a different type of pheromone, attracting agents
of the same species and repelling others. To implement this me-
chanics, we need to distinguish between pheromone types and de-
fine ‘attractive’ and ‘repelling’ pheromone. Since we encode the

† https://github.com/filthynobleman/slime-manifold

Parameter Property Tested Range
Movement Speed δa Pattern Scale ↑ [1.0,2.0]
Turn Speed ϑa Stabilization ↓ [10.0,50.0]
Vision Distance δs Cell Formation ↑ [0.4,2.0]
Vision Angle ϑs Thickness ↑ [10◦,50◦]
Evaporation Rate εd Clustering ↓ [0.2,1.0]

Table 1: Each parameter is associated with a specific property of
the generated pattern most affected by its variation. The arrow in-
dicates whether the parameter affects the property positively (green
up arrow) or negatively (red down arrow). The last column shows
the range we tested for the parameter.

pheromone trace in a texture, we assign a channel of the texture
to each species. When sampling for pheromone at a given cell,
an agent adds the pheromone from the channel of its species and
subtracts the pheromone from the channel of other species. This
way, agents from the same species will tend to aggregate and iso-
late from other species. In Figure 7, we visualize an example of this
behavior.

Similarly, we exploit attractive / repelling pheromone to model
obstacles and attractors. An obstacle is a region RO that agents must
avoid, whereas an attractor is a region RA that agents must reach
and never leave. While defining such areas for general particle dy-
namic systems would be complex, we can do this easily by treating
obstacles and attractors as particular pheromones that never diffuse
and evaporate. For the obstacles, we assign to the region RO an in-
finitely large amount of pheromone that repels all the species (i.e.
negative pheromone). This trick guarantees that an agent prefers
any other direction rather than entering into RO. For the attractors,
we define an amount of attractive pheromone superior to the num-
ber of species but not infinite. Since the pheromone of species has
values in [0,1], this always guarantees attraction, but still makes the
agents able to produce patterns inside the target region.

3. Results

Before passing to a quantitative and qualitative evaluation, we pro-
vide a description of the key parameters of our algorithm.

Parameters Among the parameters, five of them have a higher im-
pact on the produced pattern in our experiments. More in detail:

δa: movement speed (i.e. how fast agents move);
ϑa: turning speed (i.e. how fast agents change direction);
δs: distance of vision (i.e. how far the sensor is placed);
ϑs: angle of vision (i.e. how widely sensors are placed);
εd : evaporation rate (i.e. how fast the pheromone decays).

In Table 1, for each parameter, we show the tested range of val-
ues and the property that is mainly affected by each of them.

3.1. Mold Simulation

The generic evolution of the pattern follows these steps:

1. the agents are initialized randomly;

© 2022 The Author(s)
Computer Graphics Forum © 2022 The Eurographics Association and John Wiley & Sons Ltd.

https://github.com/filthynobleman/slime-manifold


F. Maggioli, R. Marin, S. Melzi & E. Rodolà / MoMaS: Mold Manifold Simulation

0 20 40 60 80 100
0

0.2

0.4
0.6

0.8
1

Time

C
vg
(t
)

Evaporation Rate 0.1
Evaporation Rate 0.3
Evaporation Rate 0.6

(a)

0 20 40 60 80 100
0

0.2

0.4
0.6

0.8
1

Time

Pn
c(

t)

Evaporation Rate 0.1
Evaporation Rate 0.3
Evaporation Rate 0.6

(b)

0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

Evaporation Rate

Coverage
Presence

(c)
Figure 8: Evolution of the pheromone coverage (a) and presence (b) during a simulation of 100 seconds. After the initial peak, the agents
stabilize on the pattern family and slowly vary the resulting pattern. Different decay rates shift the curve, without changing the evolution.
The pheromone coverage and presence after 70 seconds of simulation vary as the decay rate changes (c). The slower the evaporation, the
higher the coverage and presence. We performed these experiments on the shape on the left of Figure 1.

2. the agents start to move freely, covering large portions of the
surface;

3. the agents rapidly aggregate, and the properties of the pattern
family show up;

4. the pattern changes slowly but continuously, without changing
family.

These steps are common to all configurations and are not af-
fected by the parameters, even if changing the parameters can pro-
duce small changes in the timing.

To give a quantitative idea of the pattern distribution and identify
when the process reaches each step, we studied how much surface
is covered by pheromone over time. More formally, we define the
pheromone coverage Cvg(t) and the pheromone presence Pnc(t),
as:

Cvg(t) =
1

Full

∫
M

Pheromonet(x) dx

Pnc(t) =
1

Full

∫
M
⌈Pheromonet(x)⌉ dx

(1)

where Pheromonet(x) is the quantity of pheromone at point x and
at time t and takes values in [0,1], and ⌈·⌉ is the ceiling opera-
tor. The values are normalized with respect to the total coverage
Full =

∫
M dx.

Figures 8a and 8b show the typical evolution of pheromone cov-
erage and presence during a simulation, with different values of
evaporation rate. After the random initialization, the agents start to
move freely, and they cover large portions of the mesh, reaching
a peak. As the pattern is formed, the coverage decreases. The sta-
ble line after the peak represents the slow evolution of the pattern.
Biological simulations also exhibit a similar behavior, showing our
method acts as expected [PRAD21,MZB∗21]. The evaporation rate
affects pheromone coverage and presence, as shown in Figure 8c.
The other parameters do not affect the pheromone coverage and
have a marginal impact on the pheromone presence. We refer to
Figure 1 in the supplementary materials to support this claim.

Attractors and obstacles. In Figure 9, we show a simulation with
attractors and obstacles. The ability to solve mazes is a well-
studied property of organisms like the Physarum Polycephalum
[Ada12, Nak01], and we tested our method in this context. The
agents are initialized in the red region and expand toward the attrac-
tive region (in green), avoiding the walls. In our implementation,

Figure 9: A sphere is decorated with a texture representing a maze
(top-left frame). The red region is the starting zone, and the green
region is the attractor. Three species of slime are initialized in the
starting region (top-right) and evolve over the maze (bottom-left).
When the agents reach the attractor, they start forming patterns
inside and never leave the attracting region (bottom-right).

we use a three-channel texture to define the starting, repelling, and
attractive regions, each associated with a different channel. In con-
trast, in Figure 6 we show a 3-species mold evolution over a surface
with no obstacles or attractors, thus leaving the agents completely
free.

3.2. Performance

We run our simulations on a fixed set of ten meshes (see supple-
mentary material) and under different conditions. All the experi-
ments have been carried out on a RTX 2080 Ti.

© 2022 The Author(s)
Computer Graphics Forum © 2022 The Eurographics Association and John Wiley & Sons Ltd.



F. Maggioli, R. Marin, S. Melzi & E. Rodolà / MoMaS: Mold Manifold Simulation

tex. size avg. tpf max. tpf min. tpf
2048 8.473 37.277 7.362
4096 9.503 37.693 8.268
8192 12.120 39.039 10.263

16384 23.715 43.552 16.220

Table 2: Time per frame (in milliseconds)
at different texture resolutions. Simulations
are ran using 10 sub-steps and involve 1M
agents.

num. steps avg. tpf max. tpf min. tpf
1 12.070 37.204 10.020
10 13.428 38.632 11.087

100 47.828 61.519 44.756
1000 423.136 488.078 411.836

Table 3: Time per frame (in milliseconds)
at different steps per frame. Simulations are
ran on a 8192× 8192 texture and involve
1M agents.

num. agents avg. tpf max. tpf min. tpf
1M 12.053 39.522 10.214
2M 19.112 37.205 17.306
3M 26.303 41.857 24.006
4M 33.510 53.710 31.114

Table 4: Time per frame (in milliseconds)
at different number of agents. Simulations
are ran on a 8192× 8192 texture and use
10 sub-steps.

Texture resolution. Table 2 summarizes the average, maximum,
and minimum time per frame using textures at different resolutions.
We run the simulations for 900 frames with the same settings. In
particular, we use ten sub-steps in the tangent space. Despite the
increase in time per frame, results show that our algorithm achieves
real-time performance at very high resolutions.

Number of sub-steps. To show the impact of our movement par-
cellation policy, in Table 3, we show the average, maximum and
minimum time per frame at different number of sub-steps. We set
the texture resolution to 8192× 8192. As for Table 2, simulations
are done for 900 frames, fixing the other simulation parameters.
These results show that one or ten steps perform similarly. Subdi-
viding by 100 or 1000 steps, the frame rate significantly drops. We
conjecture that up to 100 steps, the GPU threads warm-up cover a
significant portion of the frame time. This dependency on the num-
ber of sub-steps relates the execution time to the mesh resolution.
For denser meshes, the number of triangles crossed by a single step
increases, together with the number of sub-steps required to keep
the result consistent. This, in turn, increases the execution time.

Number of agents. Finally, we are interested in studying the effi-
ciency of our implementation while varying the number of agents.
Table 4 summarizes our results over 900 frames. The increase in
the average time per frame is almost linear (about 7 ms at each in-
crement of one million agents), showing our approach scales well
with the number of agents.

3.3. Families of patterns

Our parameters allow to generate different types of pattern. The
movement speed controls the pattern scale; as we increase the ve-
locity of the agents, the pattern becomes uniform, and local details
tend to disappear. Figure 10 shows this variation together with the
variation in the evaporation rate. Here the values of the parameters
are linearly interpolated inside the ranges shown in Table 1. This
parameter weighs on the tendency of agents to form clusters. When
the evaporation rate is low, the pheromone stays on for longer, and
agents can travel by longer distances following it. As the evapo-
ration rate increases, the agents tend to aggregate only with other
agents already near them, and thus they tend to form small clusters.
The placement of sensors also affects the formation of cells and the
thickness of the trails; we refer to Section 2 of the supplementary
for a qualitative study of these dependencies.

Figure 10: Changes in the resulting pattern when varying the
movement speed and the evaporation rate. The change in movement
speed scales up the pattern along each column, making it wider. As
the evaporation rate increases along each row, the agents tend to
form shorter chains and collapse into local clusters.

3.4. Evolutive procedural texturing

The creation of complex patterns on meshes is a time-consuming
task for texture artists. For many applications, such as landscape
generation or tile synthesis, procedural texturing has become very
useful and effective [MSC12, Ols04, LN03, Par14]. Nevertheless,
most of the literature is devoted to the generation of complex tex-
tures on planar domains, and only a few works deal with general
manifold meshes [NPP21, MNPP21, FPSG21]. The ability to gen-
erate a broader range of complex patterns that follow the shape of
a mesh is of fundamental importance in generating a large variety
of contents. Moreover, [Jon10] shows that it is possible to obtain a
variety of really different patterns by simply tuning the simulation
parameters, as shown in Figure 11. For the base patterns used to
generate these rendering, we refer to Figure 4 of the supplementary
material.

Visualizing the evolution of patterns and effects using textures

© 2022 The Author(s)
Computer Graphics Forum © 2022 The Eurographics Association and John Wiley & Sons Ltd.



F. Maggioli, R. Marin, S. Melzi & E. Rodolà / MoMaS: Mold Manifold Simulation

Figure 11: Frames from simulations with the same mesh and initial
conditions but with different simulation parameters. The produced
patterns have been used as composition mask and details maps for
more complex materials. The second row shows a close-up detail
of the surface.

has been extensively used for time-dependent vector fields and
scalar functions in 2D domains [Ney03, BK08]. However, animat-
ing materials and textures over surfaces is currently limited to very
simple shaders and texture changes. The evolution of slime mold
organisms on a surface effectively animates a coloration of the
mesh at the texture level. In Figures 1 and 11 we show how to
exploit our method to simulate properties like wood grain, metal
incisions, or lava rivers.

3.5. Limitations

Our method inherits the main limitations of texture-based ap-
proaches. For example, dealing with meshes with many small tri-
angles may cause a performance drop due to the high resolution
required to model pixels and the step subdivision. However, this
does not impact the correctness of our method, and we expect this
situation to occur only for contexts where real-time performance is
less relevant.

Moreover, if adjacent triangles in a mesh generate an angle
smaller than 90 degrees can produce inconsistencies in reprojecting
the agents. In this case, triangle unfolding can be a more desirable
option for moving the agent over the surface. For this reason, we
implemented the algorithm so that TANGENTSTEP can be viewed
as a black-box routine and replaced according to the user needs.

4. Conclusions

We presented a generalization of the slime mold algorithm to sur-
face meshes and an analysis of its behavior and controllability with
simulation parameters. The algorithm produces complex patterns
on triangle meshes, behaving similarly to real biological entities.
We discussed the applicability of our method to computer graph-
ics tasks like procedural texturing. Finally, we discussed our GPU
implementation and its applicability to real-time texture animation.

We consider studying how molds evolve on surfaces with differ-
ent geometrical properties as an interesting future direction. This

analysis could open to other applications, e.g. extrapolating geome-
try descriptors or intrinsic properties of the surface from the mold’s
distribution.

Acknowledgment

We thank professor Marco Tarini for its invaluable feedback on
an early version of the manuscript. This work is supported by the
ERC grant no. 802554 (SPECGEO), the SAPIENZA BE-FOR-
ERC 2020 Grant (NONLINFMAPS), and an Alexander von Hum-
boldt Foundation Research Fellowship.

References
[ABCM20] ABDEL-BASSET M., CHANG V., MOHAMED R.:

HSMA_WOA: A hybrid novel Slime mould algorithm with
whale optimization algorithm for tackling the image segmenta-
tion problem of chest X-ray images. Applied Soft Computing
95 (2020), 106642. URL: https://www.sciencedirect.
com/science/article/pii/S1568494620305809,
doi:https://doi.org/10.1016/j.asoc.2020.106642. 2

[ABMC∗21] ABDEL-BASSET M., MOHAMED R., CHAKRABORTTY
R. K., RYAN M. J., MIRJALILI S.: An efficient binary slime
mould algorithm integrated with a novel attacking-feeding strategy
for feature selection. Computers & Industrial Engineering 153
(2021), 107078. URL: https://www.sciencedirect.com/
science/article/pii/S0360835220307488, doi:https:
//doi.org/10.1016/j.cie.2020.107078. 2

[Ada12] ADAMATZKY A.: Slime mold solves maze in one pass, assisted
by gradient of chemo-attractants. IEEE transactions on nanobioscience
11, 2 (2012), 131–134. 6

[BA17] BURGIN M., ADAMATZKY A.: Structural machines
and slime mould computation. International Journal of
General Systems 46, 3 (2017), 201–224. URL: https:
//doi.org/10.1080/03081079.2017.1300585, arXiv:
https://doi.org/10.1080/03081079.2017.1300585,
doi:10.1080/03081079.2017.1300585. 2

[BK08] BELCHER J., KOLECI C.: Using animated textures to visualize
electromagnetic fields and energy flow. arXiv preprint arXiv:0802.4034
(2008). 3, 8

[CD98] CHOPARD B., DROZ M.: Cellular automata, vol. 1. Springer,
1998. 2

[CD05] COOK R. L., DEROSE T.: Wavelet noise. ACM Transactions on
Graphics (TOG) 24, 3 (2005), 803–811. 3

[CdGDS13] CRANE K., DE GOES F., DESBRUN M., SCHRÖDER P.:
Digital geometry processing with discrete exterior calculus. In ACM
SIGGRAPH 2013 courses (New York, NY, USA, 2013), SIGGRAPH
’13, ACM. 3

[Cha06] CHAVEL I.: Riemannian geometry: a modern introduction,
vol. 98. Cambridge university press, 2006. 3

[dC16] DO CARMO M.: Differential Geometry of Curves and Surfaces:
Revised and Updated Second Edition. Dover Books on Mathematics.
Dover Publications, 2016. URL: https://books.google.it/
books?id=gg2xDQAAQBAJ. 3

[EBPF20] ELEK O., BURCHETT J. N., PROCHASKA J. X., FORBES
A. G.: Polyphorm: structural analysis of cosmological datasets via in-
teractive physarum polycephalum visualization. IEEE Transactions on
Visualization and Computer Graphics 27, 2 (2020), 806–816. 2

[EIZO20] EKINCI S., IZCI D., ZEYNELGIL H. L., ORENC S.: An ap-
plication of slime mould algorithm for optimizing parameters of power
system stabilizer. In 2020 4th International Symposium on Multidisci-
plinary Studies and Innovative Technologies (ISMSIT) (2020), pp. 1–5.
doi:10.1109/ISMSIT50672.2020.9254597. 2

© 2022 The Author(s)
Computer Graphics Forum © 2022 The Eurographics Association and John Wiley & Sons Ltd.

https://www.sciencedirect.com/science/article/pii/S1568494620305809
https://www.sciencedirect.com/science/article/pii/S1568494620305809
https://doi.org/https://doi.org/10.1016/j.asoc.2020.106642
https://www.sciencedirect.com/science/article/pii/S0360835220307488
https://www.sciencedirect.com/science/article/pii/S0360835220307488
https://doi.org/https://doi.org/10.1016/j.cie.2020.107078
https://doi.org/https://doi.org/10.1016/j.cie.2020.107078
https://doi.org/10.1080/03081079.2017.1300585
https://doi.org/10.1080/03081079.2017.1300585
http://arxiv.org/abs/https://doi.org/10.1080/03081079.2017.1300585
http://arxiv.org/abs/https://doi.org/10.1080/03081079.2017.1300585
https://doi.org/10.1080/03081079.2017.1300585
https://books.google.it/books?id=gg2xDQAAQBAJ
https://books.google.it/books?id=gg2xDQAAQBAJ
https://doi.org/10.1109/ISMSIT50672.2020.9254597


F. Maggioli, R. Marin, S. Melzi & E. Rodolà / MoMaS: Mold Manifold Simulation

[EMP∗03] EBERT D. S., MUSGRAVE F. K., PEACHEY D., PERLIN K.,
WORLEY S.: Texturing & modeling: a procedural approach. Morgan
Kaufmann, 2003. 3

[FPSG21] FANNI F. A., PELLACINI F., SCATENI R., GIACHETTI A.:
Pavel: Decorative patterns with packed volumetric elements, 2021.
arXiv:2102.01029. 3, 7

[Har01] HART J. C.: Perlin noise pixel shaders. In Proceedings of the
ACM SIGGRAPH/EUROGRAPHICS workshop on Graphics hardware
(2001), pp. 87–94. 3

[Jon10] JONES J.: Characteristics of pattern formation and
evolution in approximations of physarum transport net-
works. Artificial Life 16 (2010), 127–153. URL: https:
//uwe-repository.worktribe.com/output/980579,
doi:10.1162/artl.2010.16.2.16202. 2, 4, 7

[KCPS15] KNÖPPEL F., CRANE K., PINKALL U., SCHRÖDER P.: Stripe
patterns on surfaces. ACM Trans. Graph. 34 (2015). 3

[LCW∗20] LI S., CHEN H., WANG M., HEIDARI A. A., MIR-
JALILI S.: Slime mould algorithm: A new method for stochas-
tic optimization. Future Generation Computer Systems 111
(2020), 300–323. URL: https://www.sciencedirect.com/
science/article/pii/S0167739X19320941, doi:https:
//doi.org/10.1016/j.future.2020.03.055. 2

[LH06] LEFEBVRE S., HOPPE H.: Appearance-space texture synthesis.
ACM Trans. Graph. 25, 3 (jul 2006), 541–548. URL: https://doi.
org/10.1145/1141911.1141921, doi:10.1145/1141911.
1141921. 3

[LN03] LEFEBVRE S., NEYRET F.: Pattern based procedural textures. In
Proceedings of the 2003 Symposium on Interactive 3D Graphics (New
York, NY, USA, 2003), I3D ’03, Association for Computing Machin-
ery, p. 203–212. URL: https://doi.org/10.1145/641480.
641518, doi:10.1145/641480.641518. 3, 7

[MF21] MCGRAW T., FERDOUSI B.: Red versus blue: Slime mold
civil war. In SIGGRAPH Asia 2021 Posters (New York, NY,
USA, 2021), SA ’21 Posters, Association for Computing Machinery.
URL: https://doi.org/10.1145/3476124.3488619, doi:
10.1145/3476124.3488619. 2

[MNPP21] MANCINELLI C., NAZZARO G., PELLACINI F., PUPPO
E.: b/surf: Interactive bézier splines on surfaces. arXiv preprint
arXiv:2102.05921 (2021). 3, 7

[MSC12] MAUNG D., SHI Y., CRAWFIS R.: Procedural textures using
tilings with perlin noise. In 2012 17th International Conference on Com-
puter Games (CGAMES) (2012), IEEE, pp. 60–65. 7

[MSNN01] MORITA S., SOCIETY A. M., NAGASE T., NOMIZU K.:
Geometry of Differential Forms. Iwanami series in modern mathemat-
ics. American Mathematical Society, 2001. URL: https://books.
google.it/books?id=5N33Of2RzjsC. 3

[MZB∗21] MARBACH S., ZIETHEN N., BASTIN L., BAEUERLE F.,
ALIM K.: Network architecture determines vein fate during spontaneous
reorganization, with a time delay. bioRxiv (2021). 6

[Nak01] NAKAGAKI T.: Smart behavior of true slime mold in a labyrinth.
Research in Microbiology 152, 9 (2001), 767–770. 6

[Ney95] NEYRET F.: Animated texels. In Computer Animation and
Simulation ’95 (Vienna, 1995), Terzopoulos D., Thalmann D., (Eds.),
Springer Vienna, pp. 97–103. 3

[Ney03] NEYRET F.: Advected Textures. In ACM SIGGRAPH / Euro-
graphics Symposium on Computer Animation (San diego, United States,
July 2003), Breen D., Lin M., (Eds.), Eurographics Association, pp. 147–
153. URL: https://hal.inria.fr/inria-00537472. 8

[NPP21] NAZZARO G., PUPPO E., PELLACINI F.: Geotangle: Interac-
tive design of geodesic tangle patterns on surfaces. ACM Trans. Graph.
41, 2 (nov 2021). URL: https://doi.org/10.1145/3487909,
doi:10.1145/3487909. 3, 7

[Ols04] OLSEN J.: Realtime procedural terrain generation. 3, 7

[Par14] PARBERRY I.: Designer worlds: Procedural generation of infinite
terrain from real-world elevation data. Journal of Computer Graphics
Techniques 3, 1 (2014). 3, 7

[PRAD21] PATINO-RAMIREZ F., ARSON C., DUSSUTOUR A.: Sub-
strate and cell fusion influence on slime mold network dynamics. Scien-
tific reports 11, 1 (2021), 1–20. 6

[SGC21] SHARP N., GILLESPIE M., CRANE K.: Geometry process-
ing with intrinsic triangulations. In ACM SIGGRAPH 2021 Courses
(New York, NY, USA, 2021), SIGGRAPH ’21, Association for Comput-
ing Machinery. URL: https://doi.org/10.1145/3450508.
3464592, doi:10.1145/3450508.3464592. 3

[SSC19] SHARP N., SOLIMAN Y., CRANE K.: Navigating in-
trinsic triangulations. ACM Trans. Graph. 38, 4 (jul 2019).
URL: https://doi.org/10.1145/3306346.3322979, doi:
10.1145/3306346.3322979. 3

[Sta03] STAM J.: Flows on surfaces of arbitrary topology. In
ACM SIGGRAPH 2003 Papers (New York, NY, USA, 2003), SIG-
GRAPH ’03, Association for Computing Machinery, p. 724–731.
URL: https://doi.org/10.1145/1201775.882338, doi:
10.1145/1201775.882338. 3

[Tur91] TURK G.: Generating textures on arbitrary surfaces us-
ing reaction-diffusion. SIGGRAPH Comput. Graph. 25, 4 (jul
1991), 289–298. URL: https://doi.org/10.1145/127719.
122749, doi:10.1145/127719.122749. 3

[VCM∗18] VALLVERDÚ J., CASTRO O., MAYNE R., TA-
LANOV M., LEVIN M., BALUŠKA F., GUNJI Y., DUSSUTOUR
A., ZENIL H., ADAMATZKY A.: Slime mould: The funda-
mental mechanisms of biological cognition. Biosystems 165
(2018), 57–70. URL: https://www.sciencedirect.com/
science/article/pii/S0303264717304574, doi:https:
//doi.org/10.1016/j.biosystems.2017.12.011. 2

[WK91] WITKIN A., KASS M.: Reaction-diffusion textures. In Proceed-
ings of the 18th annual conference on computer graphics and interactive
techniques (1991), pp. 299–308. 2, 3

[WL01] WEI L.-Y., LEVOY M.: Texture synthesis over arbitrary mani-
fold surfaces. In Proceedings of the 28th annual conference on Computer
graphics and interactive techniques (2001), pp. 355–360. 3

[WLKT09] WIE L.-Y., LEFEBVRE S., KWATRA V., TURK G.: State of
the Art in Example-based Texture Synthesis. In Eurographics 2009 -
State of the Art Reports (2009), Pauly M., Greiner G., (Eds.), The Euro-
graphics Association. doi:10.2312/egst.20091063. 3

[ZGS20] ZHAO J., GAO Z.-M., SUN W.: The improved slime
mould algorithm with levy flight. Journal of Physics: Confer-
ence Series 1617 (aug 2020), 012033. URL: https://doi.
org/10.1088/1742-6596/1617/1/012033, doi:10.1088/
1742-6596/1617/1/012033. 2

© 2022 The Author(s)
Computer Graphics Forum © 2022 The Eurographics Association and John Wiley & Sons Ltd.

http://arxiv.org/abs/2102.01029
https://uwe-repository.worktribe.com/output/980579
https://uwe-repository.worktribe.com/output/980579
https://doi.org/10.1162/artl.2010.16.2.16202
https://www.sciencedirect.com/science/article/pii/S0167739X19320941
https://www.sciencedirect.com/science/article/pii/S0167739X19320941
https://doi.org/https://doi.org/10.1016/j.future.2020.03.055
https://doi.org/https://doi.org/10.1016/j.future.2020.03.055
https://doi.org/10.1145/1141911.1141921
https://doi.org/10.1145/1141911.1141921
https://doi.org/10.1145/1141911.1141921
https://doi.org/10.1145/1141911.1141921
https://doi.org/10.1145/641480.641518
https://doi.org/10.1145/641480.641518
https://doi.org/10.1145/641480.641518
https://doi.org/10.1145/3476124.3488619
https://doi.org/10.1145/3476124.3488619
https://doi.org/10.1145/3476124.3488619
https://books.google.it/books?id=5N33Of2RzjsC
https://books.google.it/books?id=5N33Of2RzjsC
https://hal.inria.fr/inria-00537472
https://doi.org/10.1145/3487909
https://doi.org/10.1145/3487909
https://doi.org/10.1145/3450508.3464592
https://doi.org/10.1145/3450508.3464592
https://doi.org/10.1145/3450508.3464592
https://doi.org/10.1145/3306346.3322979
https://doi.org/10.1145/3306346.3322979
https://doi.org/10.1145/3306346.3322979
https://doi.org/10.1145/1201775.882338
https://doi.org/10.1145/1201775.882338
https://doi.org/10.1145/1201775.882338
https://doi.org/10.1145/127719.122749
https://doi.org/10.1145/127719.122749
https://doi.org/10.1145/127719.122749
https://www.sciencedirect.com/science/article/pii/S0303264717304574
https://www.sciencedirect.com/science/article/pii/S0303264717304574
https://doi.org/https://doi.org/10.1016/j.biosystems.2017.12.011
https://doi.org/https://doi.org/10.1016/j.biosystems.2017.12.011
https://doi.org/10.2312/egst.20091063
https://doi.org/10.1088/1742-6596/1617/1/012033
https://doi.org/10.1088/1742-6596/1617/1/012033
https://doi.org/10.1088/1742-6596/1617/1/012033
https://doi.org/10.1088/1742-6596/1617/1/012033

