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Figure 1: Reconstruction of multiple curves on the fertility mesh. The samples (left) are denser where the local feature size is small - around
the serif of the G for example, matching our sampling condition. Our method is able to reconstruct multiple closed curves at the same time
(right), with sharp features and close sheets.

Abstract

Reconstructing 2D curves from sample points has long been a critical challenge in computer graphics, finding essential appli-
cations in vector graphics. The design and editing of curves on surfaces has only recently begun to receive attention, primarily
relying on human assistance, and where not, limited by very strict sampling conditions. In this work, we formally improve on
the state-of-the-art requirements and introduce an innovative algorithm capable of reconstructing closed curves directly on
surfaces from a given sparse set of sample points. We extend and adapt a state-of-the-art planar curve reconstruction method to
the realm of surfaces while dealing with the challenges arising from working on non-Euclidean domains. We demonstrate the
robustness of our method by reconstructing multiple curves on various surface meshes. We explore novel potential applications
of our approach, allowing for automated reconstruction of curves on Riemannian manifolds.

CCS Concepts
• Mathematics of computing → Paths and connectivity problems; Graph algorithms; • Computing methodologies → Mesh
geometry models;
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1. Introduction

Vector graphics represents an important research area in computer
graphics, and it is widely applied in many fields, spanning from
design and art to engineering. One of the important reasons for its
success is the ability to generate infinite resolution smooth complex
visualizations with relative ease while requiring only little input
geometry.

Recently, an increasing interest has been devoted to moving 2D
vector graphics onto surfaces, trying to address certain issues stem-
ming from texturing methods. Texturing is a well-established ap-
proach for defining patterns and decorations on surfaces, but it gen-
erally relies on finite-resolution images and parameterization. The
latter is not always available or could be difficult or expensive to de-
fine. Procedural textures try to overcome these problems, defining
patterns via mathematical functions and algorithms. However, they
generally rely on multi-dimensional noise functions that are then
sampled on the surface [EMP∗03, Har01, MBMR22]. These algo-
rithms are usually agnostic of the underlying geometric properties
and can incur high computation times.

Besides works generalizing sample-based texture synthesis to
triangular meshes [WL01, Tur01], only in recent years some so-
lutions have been proposed which try to leverage properties of
non-Euclidean metric spaces and define patterns directly on sur-
faces, either via recursive structures [NPP21] or simulated behav-
iors [MMMR22]. Another avenue of development for texture syn-
thesis is represented by neural networks that generate a textured
mesh in the style of an input image [MG23].

Despite the existence of various solutions for decorating sur-
faces, the problem of constructing lines and curves on discrete man-
ifolds has not been addressed satisfactorily yet. Defining curves
and shapes directly on surfaces is innovative for design appli-
cations [PSOA18], and has a relevant impact in the processing
of archaeological data [KST08, GTSK13] by extracting specific
decorations from the models. However, little research has been
devoted to improving the definition and the reconstruction of
curves on discrete surfaces, besides efforts to generalize Bézier
curves [MNPP21]. Furthermore, the existing techniques are gen-
erally centered around human interaction, as they are designed to
be tools for artists and end users, and even the most recent solutions
require an ordered sequence of samples [MP23]. To the best of our
knowledge, Shah et al. [SC13] provided the first and only solution
for dealing with curve reconstruction on Riemannian manifolds.
Still, their proposed method can only deal with dense uniform sam-
plings and only guarantees to reconstruct curves in limited settings.
By generalizing state-of-the-art theoretical results and algorithmic
solutions for planar curve reconstruction to arbitrary manifold do-
mains, we introduce a more robust method that, given an unordered
collection of points over a Riemannian manifold that follows our
relaxed sampling conditions, always produces an ordered sequence
identifying a closed curve on the surface (see Figure 1).

Our contributions are summarized in the following:

• we propose a solution that extends existing state-of-the-art the-
ory and techniques for 2D curve reconstruction to manifold do-
mains, overcoming the challenges arising from translating the
problem into non-Euclidean spaces;

• we improve the state-of-the-art sampling conditions for curve
reconstruction on Riemannian manifolds [SC13], allowing for
sparser sampling for curve reconstruction on manifold domains;

• we perform a qualitative study of our method on real-world data
coming from established applications, where the previous solu-
tion fails due to the sparsity of the samples.

2. Related work

Reconstructing curves from samples in a non-Euclidean space ex-
tends the classical problem of planar curve reconstruction to more
complex spaces, drawing inspiration from tangent domains: sur-
face design and texturing using on-surface elements. This section
will provide an overview of various techniques that deal with each
of these fields individually and explain how they relate to our work.

Planar curve reconstruction, where the input samples and their
respective reconstructed curve live in R2, is dealt with by nu-
merous methods. They are usually divided into two main cate-
gories: implicit (methods that approximate the inside/outside of the
shape and recreate the boundary based on the division between the
two) [HDD∗92, KBH06] and explicit (interpolatory methods that
create some ordering among the sample points). We will focus on
the explicit reconstruction methods, as they are the most relevant
to our work. However, most of these methods are limited to planar
curves, with some of them extended to reconstructing surfaces as
well. Some of the presented methods can reconstruct curves in R3

but the samples do not live on a manifold.

To interpolate the input sample points, most methods compute a
graph on the input and use a subset of the edges as the final recon-
struction. One of the most commonly used types of graphs is the
Delaunay triangulation, due to its geometrical properties and the-
oretical guarantees of including the reconstruction subject to sam-
pling density [ABE98]. Starting from the Delaunay triangulation,
Amenta et al. filter the edges whose proximity is empty of sam-
ples and of Voronoi vertices. This approach has been improved to
take into account Voronoi poles - Voronoi vertices corresponding
to long, skinny Voronoi cells [ACK01].

Using the same Delaunay starting base, a greedy procedure is
used to pick a seed vertex and find the nearest neighbors until the
endpoints are close enough to be connected or until all points have
been connected [PM16]. Similarly, various criteria have been de-
vised for keeping a Delaunay edge between two points: the new
neighbor has to be situated in the half-plane (defined using the
normal at the current sample) opposite to the previous connec-
tion [DK99], or in the opposite half-plane defined using the bisec-
tor of the previous edge [OMW16]. Another set of criteria used
to filter the triangulation is based on leveraging the Voronoi poles
to approximate the normals for the half-plane computation, con-
sidering the angle and the ratio between the current edge and its
Voronoi counterpart [DW02]. Various other methods build on the
Delaunay triangulation as a starting base for curve reconstruc-
tion [OM13, MOW22], and a comprehensive survey on multiple
implicit methods can be found here [OPP∗21]. Our method lifts the
reconstruction of curves from planar surfaces to manifold domains
of any dimension.
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Curve reconstruction on Riemannian manifolds has been ap-
proached as an extension of planar metrics and sampling conditions
to Riemannian manifolds [SC13]. However, the classical definition
of the medial axis does not hold on surfaces if the medial axis is
constrained to live on the surface as well. The authors introduce a
new sampling criterion, based on the minimum value between the
distance to the medial axis and the injectivity radius. We introduce
the formal definitions of these concepts in Section 3 and we relax
their dense sampling requirements in Section 4 to allow for recon-
struction with fewer samples. To the best of our knowledge, this is
the only work that extends the problem of curve reconstruction to
Riemannian manifolds.

Vector graphics on planar surfaces have been thoroughly re-
searched and are being used in multiple tools [Ink, Ado]. Recently,
editing and importing curves on surfaces have received interest in
the graphics field, partly due to the improvement in computing
geodesic paths efficiently [SC20]. Users can interact with designs
directly on the mesh, by either editing splines on a 2D local pro-
jection of the surface [PSOA18], which is usually prone to artifacts
due to the projection procedure, as explored in [YLT19], or editing
splines directly on the surfaces, bypassing the projection artifacts,
by using geodesic metrics on the surface [NPP21,MNPP21]. How-
ever, these editing methods require user input or a predefined order-
ing of the samples to construct the curves on the surface, which is
the missing link we are providing. Hence, our method also provides
a building block for further editing splines on surfaces.

3. Background and notations

Informally speaking, a d-dimensional manifold is a collection of
pieces of the d-dimensional hyperspace that are deformed and
glued together to form a continuous smooth domain. Such domain
can be embedded in a higher dimensional space (like in the case
of 2-dimensional surfaces embedded in 3D space), or exist on their
own (like the 3D rotation group SO(3) [HH13]). For a formal and
complete definition of Riemannian manifolds, we refer to the books
by Morita and Do Carmo [Mor01, DC16].

To refer to any such d-dimensional manifold (including continu-
ous curves) we use calligraphic letters (i.e.,M, C), and we denote
the geodesic distance function over a manifoldM with dM. Fur-
thermore, we refer to any discrete representation of a manifoldM
with the symbol M̂.

Specifically, we represent discrete 2-dimensional surfaces as
triplets M̂= (V,E,T ), where V is a set of vertices, T is a set of ori-
ented triangles among vertices, and E is a set of unordered edges
induced by the triangles in T . We also represent discrete curves
(i.e., 1-dimensional manifolds) as tuples Ĉ = (V,E), where V is a
set of vertices and E is a set of edges between vertices. Through-
out this work, we assume the manifoldness of discrete surfaces and
curves [CDGDS13], and we assume to work with curves made by a
single component and forming a closed non-self-intersecting loop.

We also recall the definitions of medial axis and local feature
size (see Figure 2), which we will use for distinguishing between
different curve sampling strategies.
Definition 1 ([Blu67]). Let C be a smooth curve embedded in a

Figure 2: Left: the local feature size at each point of the curve
represents its distance to the medial axis (in black). Right: a ρ-
sampling of the curve with ρ = 1.0 shows that the samples are
denser where the medial axis is closer to the curve.

Figure 3: Difference between uniform sampling (left) and non-
uniform sampling (right) with non-uniformity ratio u = 1.5.

metric space (M,dM). The medial axis Γ(C) of C is the closure of
the set of points inM that have two or more closest points in C.
Definition 2 ([Rup93]). Let p ∈ C be a point on the curve. The
local feature size lfs(p) of p is the minimum distance from p to the
medial axis of C.

lfs(p) = min
q∈Γ(C)

dM(p,q) . (1)

3.1. Curve sampling

In this section, we repeat definitions related to sampling planar
curves and conclude with our own definitions that extend to mani-
folds.

Given a smooth curve C and a set of samples S ⊂ C, recon-
structing the curve is the process of constructing a discrete curve
Ĉ = (S,E) such that an edge e = (si,s j) is in E if and only if si and
s j are consecutive samples along the curve C.

One technique to evaluate the sampling quality is by using the ρ
value, which was introduced by Ohrhallinger et al. [OMW16] and
relies on the notion of reach.
Definition 3 ([Fed59]). The reach of an interval I ⊂ C is the mini-
mum local feature size among points in the interval:

reach(I) = inf
p∈I

lfs(p) . (2)

Definition 4 ([OMW16]). A smooth curve C is ρ-sampled by a
sample set S ⊂ C if every point p ∈ C of the curve is closer to a
sample than a ρ-fraction of the reach of the interval I = [s0,s1] of
consecutive samples containing it:

∀p ∈ I, min
s∈{s0,s1}

dM(p,s)< ρ reach(I) . (3)
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Figure 4: Examples of cut locus (in red) given a point (in blue) on
different surfaces. The cut locus can be a single point (left) or an
entire curve (right).

In Figure 2, we show how the ρ-sampling depends on the local
feature size, requiring a more dense sampling where the medial axis
is closer to the curve and allowing a more sparse sampling where
the local feature size is larger.

A different category of sampling conditions enforces a specific
distance between consecutive samples, unrelated to the medial axis.
Hence, we conclude our collection of planar sampling conditions
by distinguishing between uniform and non-uniform sampling, ex-
amples of which can be observed in Figure 3.
Definition 5. A smooth curve C is uniformly ϑ-sampled by a sam-
ple set S⊂ C if for any two consecutive samples s0,s1 ∈ S, it holds
dM(s0,s1)< ϑ.
Definition 6. A smooth curve C is non-uniformly sampled with a
non-uniformity ratio u ∈ R+ by a sample set S⊂ C if for any three
consecutive samples s0,s1,s2 ∈ S, it holds that us1 < u, where the
us1 is defined as:

us1 =
max(dM(s0,s1),dM(s1,s2))

min(dM(s0,s1),dM(s1,s2))
. (4)

3.2. Differential geometry

We now lift the definitions required for the local feature size from
the plane to manifolds, to be able to introduce sampling conditions
on manifolds in the subsequent sections.

Euclidean disks are widely used in relation to planar curve re-
construction, and they have a straightforward generalization to ar-
bitrary metric spaces.
Definition 7. Let (M,dM) be a metric space, p ∈M a point on
M, and r ∈ R. The r-ball centered at p is the region Bp,r of points
at a distance less than r from p:

Bp,r = {x ∈M : dM(p,x)< r} . (5)

The closure clBp,r of the r-ball also includes its boundary:

∂Bp,r = {x ∈M : dM(p,x) = r} . (6)

The work of Shah et al. [SC13] identifies the limitations of the
local feature size in non-Euclidean metric spaces, and exploits the
notions of cut locus and injectivity radius to overcome these issues.
Informally speaking, the cut locus of a point p on the manifoldM

Medial
axis

Figure 5: Two examples of curves on surfaces (solid black) where
the local feature size exhibits undesired behaviors. Left: an r-ball
(shaded in light blue) around p that contains the entire curve C1,
but no point of the medial axis. Right: a curve C2 on the surface
with an empty medial axis (i.e., the local feature size is undefined).

can be seen as the set of all points q such that there are at least two
distinct minimizing geodesics from p to q – see Figure 4.
Definition 8. Let M be a d-dimensional Riemannian manifold,
possibly with boundary ∂M, and equipped with a connection defin-
ing an exponential map expp : Tp(M)→M at every point p∈M.
The cut locus of p in the tangent space Tp(M) is defined as the set
CT (M)(p) of all vectors v∈ Tp(M) such that the parametric curve
expp(tv) is a minimizing geodesic for t ∈ [0,1] and not minimizing
for t > 1.

The cut locus of p on the manifoldM is the set CM(p) of all
points q ∈M that are the image of a vector v ∈CT (M) under the
exponential map.

Intuitively, the injectivity radius is the maximum size of an r-
ball around a point that preserves injectivity when mapped the Eu-
clidean space – refer to Theorem 1 and Figure 7.
Definition 9 ([DC16]). Let p ∈M be a point on the manifoldM
and CM(p) be its cut locus. The injectivity radius of p is

iM(p) = inf
q∈CM(p)

dM(p,q) . (7)

The injectivity radius of the manifoldM is thus defined as

IM = inf
p∈M

iM(p) . (8)

By using these tools, Shah et al. [SC13] show that curves can be
reconstructed using a minimum spanning tree, if they are uniformly
ϑ-sampled, with ϑ < min

(
infp∈C lfs(p),IM

)
.

4. Method

In this paper, we advance the task of reconstructing curves on man-
ifolds, addressing curves that are sampled more sparsely and non-
uniformly compared to the state-of-the-art.

The standard notion of local feature size is not suitable for non-
Euclidean metric spaces. In Figure 5 we show two examples of
curves where the local feature size presents undesired behaviors.
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Figure 6: A comparison between a dense uniform sampling,
with 281 samples, satisfying the conditions described by Shah et
al. [SC13] (on the left) and a non-uniform ρ-sampling scheme with
only 124 samples (on the right).

For instance, we can have r-balls that contain the entire curve with-
out containing the medial axis, or even curves that do not have a
medial axis, making it impossible to define the local feature size.

By taking inspiration from Shah et al. [SC13], we exploit the in-
jectivity radius to strengthen the definition of ρ-sampling, making it
suitable for manifold domains and showing that we can preserve its
fundamental properties (Section 4.1). Then, we generalize a prox-
imity graph successfully used for 2D curve reconstruction to ar-
bitrary metric spaces, proving that analogous sampling conditions
apply (Section 4.2). And finally, we present an algorithm that relies
on the properties of our graph to reconstruct curves on Riemannian
manifolds (Section 4.3). The proofs of all our claims are provided
in Appendix A.

4.1. Non-uniform sparse sampling on surfaces

The solution proposed by Shah et al. [SC13] consists of bounding
the local feature size to the injectivity radius of the entire surface.
While this approach effectively solves the previous issues, it also
makes the sampling very dense when the manifold contains very
narrow sections or sharp features: the smallest injectivity radius
of the surface affects the overall sampling conditions, even if the
curve might not pass close to these regions. Instead, we use the lo-
cal feature size and the reach by considering the injectivity radius
of individual points. In this way, we can define properties inside
topologically flat regions and ensure that they behave similarly to a
Euclidean space, avoiding cases where the topology of the r-ball in-
troduces pathological issues – see the left frame of Figure 5, where
the local feature size is larger than the injectivity radius.
Definition 10. Let C ⊂M be a closed curve on the manifoldM.
For every point p ∈ C, we define the injective local feature size of p
as

ilfs(p) = min(lfs(p), iM(p)) . (9)

For every interval I ⊂ C of the curve, we extend the injective
reach of I as

ireach(I) = min
p∈I

ilfs(p) . (10)

From Definition 10, the extension of ρ-sampling to its injective
counterpart follows naturally. The example from Figure 6 shows
the difference between the uniform dense sampling required for

Figure 7: Mapping of an r-ball around a point p on a surface (left)
to the Euclidean disk B2 (right). The mapping is possible because
r ≤ iM(p).

the method from Shah et al. [SC13] against a more relaxed non-
uniform ρ-sampling scheme.

The sample sets in Figure 6 were computed from a discrete, very
dense initial curve by approximating the medial axis, and implic-
itly, the local feature size, using the Voronoi diagram [DZ04]. We
then employed a backtracking approach to extract a subset of sam-
ples that satisfy our sampling conditions. Generating an exact and
minimal sampling remains an open problem.

Curve properties. We start from a classical result in differential
geometry about the injectivity radius.
Theorem 1 ([Kli95]). Let M be a d-dimensional Riemannian
manifold. For every point p ∈M, the restriction of the exponen-
tial map expp to U ⊂ Tp(M), such that expp(U) = Bp,r, Bp,r is
injective for all r ≤ iM(p) and it is a diffeomorphism onto its im-
age.

From this result, we can deduce that if r≤ iM(p), then there ex-
ists a diffeomorphism between the r-ball Bp,r centered at p and the
Euclidean d-dimensional ball Bd , as we can see in the example de-
picted in Figure 7. We can thus generalize the following important
result that holds in 2D:
Lemma 1 ([ABE98]). Let C ⊂ R2 be a closed curve in the plane.
For every point p ∈ R2 and every r ∈ R+, if the Euclidean disk D
of radius r and centered at p contains at least two points of C, then
either D∩C is a topological 1-disk, or D contains a point of Γ(C),
or both.

For Riemannian manifolds of arbitrary dimensions we get:
Lemma 2. Let C ⊂M be a closed curve on the manifoldM. For
every point p ∈M and every positive real value r ≤ iM(p), if the
r-ball Bp,r centered at p contains at least two points of C, then then
either Bp,r ∩C is a topological 1-disk, or Bp,r contains a point of
Γ(C), or both.
Corollary 1. For every point p ∈ C, and for r ≤ ilfs(p), the ball
Bp,r intersects C in a topological 1-disk.

In Figure 8 we show an example of a planar curve intersected
by Euclidean disks. At point p1, the disk bounded by ilfs(p1) in-
tersects the curve in a topological 1-disk, as imposed by Corol-
lary 1. The other points depict the three possible cases imposed
by Lemma 1 and its generalization - Lemma 2: p2 intersects the
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Figure 8: A planar curve (in black) and its medial axis (in red).
Given some points (in dark blue), the disks centered at them (in
light blue) either intersect the curve in a topological 1-disk, inter-
sect the medial axis, or both.

Figure 9: For a set of points in 2D, the intersection between De-
launay triangulation (red) and SIG (blue) creates the SIGDT (yel-
low). The edges removed from Delaunay triangulation and SIG are
shown with dashed lines of the graphs’ corresponding colors.

curve in a topological 1-disk; p3 does the same, but it also contains
part of the medial axis; p4 intersects the curve in two disconnected
components, and thus it must contain a part of the medial axis.

Properties of the sampling. From Lemma 2 and Corollary 1, we
can infer information on how the samples are distributed.
Proposition 1. Let S ⊂ C be a sampling of the curve. For every
point p ∈ C, let s0,s1 ∈ S be the samples such that the interval I =
(s0,s1) is the smallest open interval between samples that contains
p. If there exists a point q ∈ C not belonging to the closure of I that
is closer to p than both s0 and s1 are to p, then dM(p,q)≥ ilfs(p).

Note that the statement of Proposition 1 does not require that
p /∈ S. Indeed, if p is a sample, the two samples that define the
smallest interval containing p are its adjacent samples. This is the
reason we use the open interval containing p, and not the closed
version. Given the proper constraints of ρ, we can provide addi-
tional guarantees.
Corollary 2. Let S ⊂ C be a sampling of the curve, and s0,s1 ∈ S
be two adjacent samples defining an interval I = [s0,s1] ⊂ C. If S
is a ρ-sampling with ρ < 1, then for every point p ∈ I, the closest
sample to p is either s0 or s1.

Proposition 2. Let S⊂ C be a ρ-sampling, with ρ< 1. For any two
consecutive samples s0,s1, let I = [s0,s1] be the interval between
them. Then we have dM(s0,s1)< 2ireach(I).

Figure 10: Left: a triangular mesh with some surface samples.
Center: the geodesic Voronoi partitioning induced by the samples
on the mesh, and its dual graph (white) obtained by locating the
shortest geodesic paths between samples in adjacent partitions.
Right: the SIGDV (black) obtained by removing the edges not in
the SIG.

4.2. SIGDV graph on manifolds

In their work for 2D curve reconstruction, Marin et al. [MOW22]
introduced the SIGDT proximity graph, obtained by intersecting
the Delaunay triangulation with the Spheres-of-Influence graph.
Definition 11 ([Tou88]). Given a set of vertices V =
{v1, · · · ,vn} ⊂ M, the Spheres-of-Influence (SIG) graph of
V is a graph G = (V,E) such that two nodes are connected if and
only if they are closer than the sum of distances to their respective
nearest neighbors. Namely

e = {vi, v j} ∈ E ⇐⇒ dM(vi,v j)≤ δNN(vi)+δNN(v j) , (11)

where δNN(vi) = mink ̸=i dM(vi,vk) is the distance of vi from its
nearest neighbor.

The SIGDT is proved, in the planar setting, to contain the cor-
rect reconstruction of the curve under ρ-sampling conditions with
ρ < 1 and non-uniformity ratio u < 2, and being a subgraph of the
Delaunay triangulation, it is also a sparse graph. These conditions
make it a good starting point for finding the reconstruction of the
curve. We provide an example of the construction of the SIGDT in
Figure 9.

While the Spheres-of-Influence graph is only defined in terms of
distances, lifting the Delaunay triangulation to manifold domains
is less intuitive. The lack of a coordinate system makes it difficult
to generalize classical construction algorithms like the Bowyer-
Watson method [Bow81, Wat81] to non-Euclidean metric spaces.
However, we use the dual graph of the Delaunay triangulation –
the Voronoi partitioning of the vertex set, which is defined only
in terms of distances [AKL13]. This duality has already been ex-
ploited for lifting the Delaunay triangulation to surfaces and has
proved to maintain many properties of the 2D triangulation, such
as providing angle stability and containing the nearest neighbor
graph [Wan15, LFXH17]. Furthermore, it can be shown that com-
puting the Voronoi partitioning of discrete manifolds is an effi-
cient operation that can be achieved in time O (|V | log |V | logk),
being |V | the number of vertices and k the number of sam-
ples [PC06, MBRM24].

Differently from the Euclidean space, the dual of a Voronoi de-
composition does not always guarantee a valid triangulation of the
point set, as there are some additional constraints that the samples
must satisfy [ACDL00,DZM07]. If these are not satisfied, the dual
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Figure 11: Left: a smooth closed curve (red) sampled at some
vertices (black). Middle: the vertices are connected using SIGDV
(black), including the edges between consecutive samples. Right:
the shortest Hamiltonian path (red) inside SIGDV.

still forms a sparse graph that encodes the proximity of samples
well. In order to obtain the dual of the Voronoi, we connect sam-
ples that generate adjacent partitions, as shown in Figure 10. By re-
moving all the edges from the Voronoi dual that do not also satisfy
Definition 11, we obtain the intersection between the Spheres-of-
Influence graph and the dual Voronoi graph, which we denote as
SIGDV, and which provides a generalization for the SIGDT graph.

The following statements about our graph hold. Proofs are pro-
vided in Appendix A.
Lemma 3. Let s0,s1 ∈C be consecutive samples from a ρ-sampling
S ∈ C, with ρ < 1. The edge e(s0,s1) belongs to the dual Voronoi
graph of S.
Lemma 4. Let s0,s1,s2,s3 ∈ C be consecutive samples from a ρ,u-
sampling S ∈ C, with ρ < 1 and u < 2. The edge e(s1,s2) belongs
to the Spheres-of-Influence graph of S.

Finally, we prove (in Appendix A) that SIGDV contains the cor-
rect reconstruction under analogous sampling conditions as the 2D
case:
Theorem 2. Let M be a d-dimensional Riemannian manifold,
possibly with boundary ∂M, and equipped with a geodesic dis-
tance dM :M×M→ R. Let C ⊂M be a curve on the manifold
M, and S = {s1, · · · ,sk} ⊂ C be a ρ,u-sampling of C, with ρ < 1
and u < 2. The edge connecting any pair of consecutive samples is
part of the SIGDV of S.

In Figure 11 we illustrate an example application of Theorem 2
to a curve on a 2-dimensional surface. The smooth curve wrapping
around the head of the dog shape is sampled with a set of points,
which are then connected with SIGDV. If two samples are adjacent
on the curve, they share an edge inside SIGDV.

4.3. Curve reconstruction as a Traveling Salesman Problem

While Theorem 2 guarantees that SIGDV contains the correct re-
construction, it may contain additional edges. This problem was
also addressed by Marin et al. [MOW22] for their SIGDT planar
curve reconstruction algorithm. In their pipeline, the authors pro-
pose to apply a series of inflating and sculpting operations until
they obtain a manifold curve. In our case, this is not applicable, as
in non-Euclidean spaces, such as manifolds, it is not always possi-
ble to define the notions of “inside” and “outside” of a curve.

To overcome this issue, we note that the edges of the correct re-
construction should create a cycle such that each sample is visited

Algorithm 1 Algorithm for solving the TSP biased towards SIGDV
edges.

1: procedure TSPSOLVER(G = (V,E), D ∈ R|V |×|V |)
2: T ← minimum spanning tree of G w.r.t. D
3: P← ordering of V following a pre-order DFS visit of T
4: repeat
5: Find (i, j),(ℓ,h) ∈ P s.t. Di j +Dℓh > Diℓ+D jh
6: P← P\{(i, j),(ℓ,h)}
7: P← P∪{(i, ℓ),( j,h)}
8: until P is unchanged
9: return P

10: end procedure

only once. Various ways of extracting these edges exist in the litera-
ture, such as the identification of a Hamiltonian cycle [IN07,Bjo14]
or the solution to a Traveling Salesman Problem (TSP). While we
are not guaranteed that the TSP solution encodes the ground truth
ordering in general, it has been shown that outputting a shortest
path adheres to the Gestalt principles and provides a good heuris-
tic in the planar case [AM00,OM13,OPP∗21]. In our experiments,
this heuristics proved to generalize well on manifold domains, as
shown in the example from Figure 11.

The Traveling Salesman Problem is a fundamental problem in
computer science, and it is at the very core of many optimization
problems. Given a set of points, TSP requires finding the shortest
path that connects all the points, thus solving the problem of curve
reconstruction as well. The problem can be formulated in different
spaces and with different connectivity constraints, but all of them
have been shown to be NP-hard [Kar75]. However, the importance
of the TSP led many researchers to deploy approximated solutions,
especially relying on a nearest-neighbor approach [JM97, RBP07]
– even though these solutions tend to have a large approximation
factor. Other techniques [DMC96, SM15] proved to be much more
effective, while paying a small price on time efficiency.

Most of the research related to the TSP assumes complete graphs
(i.e., each node is connected to every other node). While we can ac-
cept solutions containing edges not belonging to SIGDV, we know
that this graph contains the correct reconstruction under some sam-
pling conditions, and hence we want to bias the algorithm to use
SIGDV edges, while at the same time guaranteeing an efficient so-
lution.

We start from a solution that exploits the Minimum Spanning
Tree of a graph to produce a 2-optimal approximation to the prob-
lem (i.e., a solution that is at most two times as expensive as the op-
timal one) [CLRS22]. Our method is summarized in Algorithm 1,
where the input graph G is the SIGDV graph and the matrix D con-
tains in the entry Di j the geodesic distance dM(i, j) between the
i-th and the j-th samples.

We first compute the minimum spanning tree T of the graph G
and via a pre-ordered Depth-First Search (DFS) visit of T we find
an ordering of the nodes in V that we use to build an initial cycle
P (Lines 1-2). Since the metric dM respect the triangular inequal-
ity, the cycle P is guaranteed to be a 2-optimal approximation of
the TSP [CLRS22]. However, P does not offer any guarantee for
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the cycle to be a local minimum of the problem. Thus, we post-
process the ordering by searching for any pair of edges (i, j),(ℓ,h)
such that if we swap them into (i, ℓ),( j,h) we obtain a shorter cy-
cle, and we iterate this process until no new pair of edges is found
(Lines 4-8). This edge-swap procedure was originally proposed by
Croes [Cro58] for solving the TSP with an approximation factor
of O (log n/log log n) on Euclidean instances (being n the number of
vertices) [BHZ23].

Relaxed sampling conditions. The sampling conditions imposed
by Theorem 2 allow for a sparser sampling compared to the state-
of-the-art. However, when these conditions are not met, we do not
have the guarantee that SIGDV contains the correct reconstruction
or any other Hamiltonian cycle. Intersecting the dual Voronoi graph
with the SIG could even produce a graph with multiple discon-
nected components. In some applications (see Figure 1) the input
could be known to include samples from distinct closed loops and
the clustering can be used to identify multiple curves. If the user
desires to reconstruct only a single curve, we alter the graph to
produce a single connected component. First, we build the com-
plete graph G = (V,E) of the connected components, where each
node Ni ∈ V represents a single component of SIGDV, and the
length of the edge (Ni,N j) ∈ E is given by minu∈Ni,v∈N j dM(u,v).
Then, we compute the minimum spanning tree T of this graph. For
every edge (Ni,N j) ∈ T, we add to SIGDV the edge (u∗,v∗) =
argminu∈Ni,v∈N j

dM(u,v). This pre-processing guarantees that we
obtain a single connected component, while, at the same time,
adding non-SIGDV edges with minimum total edge length. The
choice between single and multiple curve reconstruction is left to
the user for full flexibility.

5. Applications

We investigate several diverse applications of our method. We first
compare it to the approach proposed by Shah et al. [SC13] (MST)
for motion tracking applications, where we show that we are able
to reconstruct complex paths with far fewer samples. We show how
our method can be applied in processing archaeological data, and
how it can improve contour matching results, and we discuss the
applicability of our solution to isoline extraction from sparse sam-
ples for scientific visualization.

Our method has been implemented in C++, using Eigen [GJ∗10]
and Geometry Central [SC∗19]. The implementation is avail-
able at https://github.com/filthynobleman/curves-surf. For com-
puting Voronoi diagrams in high-dimensional spaces we use
Qhull [BDH96], and for computing the geodesic paths used in our
visualizations we use the Flip Geodesics algorithm [SC20].

5.1. Motion tracking

In their work about curve reconstruction on Riemannian manifolds,
Shah et al. [SC13] propose, as an application, the reconstruction of
curves in the space of rigid motions SE(3) for tracking the mo-
tion of an object from position and rotation samples. To apply
our method to this task, we first need to define how to compute
a Voronoi diagram in SE(3).

As discussed by González-López et al. [GLR95], the group

MST Ours

Figure 12: Minimal number of samples for reconstructing the mo-
tion of an airplane along a path using MST - left (21), and our
approach - right (9). The curve shows the ground truth path of the
airplane. The airplane model has been created by Kemal Çolak and
distributed by Sketchfab under the license CC BY 4.0.

SE(3) can be expressed as the product SO(3)×R3, SO(3) being
the group of rotations in 3D space. The authors propose a method
for computing the Voronoi decomposition in SO(3) relying on the
following result.
Proposition 3 ([GLR95]). Given a set of rotations R = {ri}k

i=1 in
SO(3) and a set of rotation matrices R′ = {Ri}k

i=1 in R3×3 such
that Ri represents the rotation of ri, the Voronoi decomposition
Vor(R,dSO(3)) of SO(3) w.r.t. the rotations R can be obtained as

Vor(R,dSO(3)) = Vor(R′,dR9)∩SO(3) . (12)

We improve this result for an easier computation of the Voronoi
diagram in the group SO(3). The proof is provided in Appendix A.
Proposition 4. Given a set of rotations R = {ri}k

i=1 in SO(3) and
a set of quaternions Q = {qi}k

i=1 in H such that qi represents the
rotation ri, then the Voronoi decomposition Vor(R,dSO(3)) of SO(3)
w.r.t. the rotations R can be obtained as

Vor(R,dSO(3)) = Vor(Q,dR4)∩SO(3) . (13)

As proven by González-López et al. [GLR95], this result does
not generalize to SE(3), and we must only rely on the Voronoi de-
composition of the embedding space. However, by reducing the di-
mensionality of the embedding space of SO(3) from R9 to R4, we
also reduce the dimensionality of the embedding space of SE(3)
from R12 to R7. Thus, we can use the Voronoi decomposition in
R7 as a reasonable approximation of the Voronoi decomposition in
SE(3).

In Figure 12 we present an example of motion reconstructed
using MST and our solution, and we show the minimum number
of samples required by each method to correctly reconstruct the
motion sequence – 21 for MST and 9 for our method. While our
method can deal with sparse non-uniform sampling and still cor-
rectly recover the ordering of the samples, it is evident here that
MST requires a more dense and uniform sampling scheme. Indeed,
the path presents a challenging shape, as the two close turns in the
bottom half are very close in space, and the adjacent samples on the
curve are very different in terms of rotations. Such curves can be

https://github.com/filthynobleman/curves-surf
https://skfb.ly/oCJRy
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MST Ours

Figure 13: Reconstruction of complex curves (white) on the sur-
face of a clay vase from a set of manually chosen samples (blue).
The MST algorithm (left) fails to reconstruct meaningful contours,
while ours (right) correctly identifies the two shapes. The vase
model has been created by Laura Shea and distributed by Sketch-
fab under the license CC BY-NC-SA 4.0 DEED.

adversarial for MST, as the distance in SE(3) between non-adjacent
samples is small, preventing their method from finding a closed
curve.

5.2. Virtual cultural heritage

Scientific visualization and 3D shape analysis are already preva-
lent in archaeological applications as instruments for handling the
always-increasing amount of data available to cultural heritage re-
search [Tal14].

Successful applications of computational geometry to the analy-
sis of archaeological data include the identification of demarcating
curves on low reliefs, statues, and other various kinds of cultural
heritage artifacts [GTSK13, TBF16], curve matching tasks in 2D
and 3D for solving the problem of fragment reconstruction [MK03]
and pattern extraction of culturally significant patterns [YP20].

The problem of reconstructing curves on surfaces is closely re-
lated to these applications, as there can be cases where missing in-
formation from lost pieces could be inferred by knowing the struc-
ture of the underlying artifact (e.g. partial designs on vases that
could be reconstructed from still existing pieces). In Figure 13 we
show that our method can faithfully reconstruct complex shapes on
the surface of a vase, precisely contouring the black drawings from
a sparse sampling. We also compare our result against the MST al-
gorithm, which is unable to find a closed shape due to the presence
of multiple connected components and the large distance among
some of the samples.

Ground
truthSketch Elastic2D3D Elastic2D3D

ordering MST Ours

Figure 14: Examples of how our curve reconstruction method is
applied to refine a contour. Given a contour obtained with ELAS-
TIC2D3D [LRS∗16], we sample it sparsely and reconnect the sam-
ples using the ordering of the contour, MST, and our algorithm.

5.3. Contour matching

Contour matching is a novel task in computer graphics and vision
applications that has recently achieved high attention [LRS∗16,
RLB23]. The problem this field is concerned with is how to mean-
ingfully relate a surface to the curve defining its contour, even under
non-rigid deformation of the surface [WSSC11].

While the existing approaches reliably compute non-rigid cor-
respondences between shapes and their contour, the task is still
new and even state-of-the-art methods do not always provide high-
quality guarantees, producing self-intersecting and locally degen-
erate curves. We show that our curve reconstruction technique can
be exploited as a refinement step to improve the contour quality.

For our evaluation, we use the method proposed by Lähner
et al. [LRS∗16] (ELASTIC2D3D), selecting some instances from
the dataset that the authors derive from the FAUST shape collec-
tion [BRLB14] where the method produces many degeneracies.
From the curve obtained with ELASTIC2D3D, we randomly ex-
tract 3% of the vertices, and we run our algorithm for reconstruct-
ing the contour over the target shape.

Even if ELASTIC2D3D may produce self-intersections and lo-
cally degenerate curves, it captures the overall shape of the contour.
Thus, a sparse sampling of the curve should give a good sparse con-
tour. As shown in the examples from Figure 14, with our algorithm
we can smooth the results of ELASTIC2D3D, resolving the self-
intersections and producing non-degenerate curves. For reference,
we also connect the samples with their original ordering, proving
that our method’s reordering of the samples improves the overall
result.

MST cannot produce a valid closed curve in any of the tested
cases, as the conditions imposed by the algorithm require the sam-
pling to be denser and more uniform for the minimum spanning
tree to result in a chain. This is primarily due to the presence of de-
generacies in the curve produced by ELASTIC2D3D in the form of
jagged edges. Hence, two points sampled from a degenerate section
of the curve would very likely result in a branch on the minimum

https://skfb.ly/XF8F
https://skfb.ly/XF8F
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spanning tree. We validate this argument by running the MST algo-
rithm on different sampling densities spanning from 1% to 100% of
the curve vertices produced by ELASTIC2D3D, and the minimum
spanning tree never results in a chain.

5.4. Sparse data visualization

Having shown that our method can improve contours already com-
puted by reordering a sparse set of their samples, we now move
onto another definition of contours, namely their existence as iso-
lines (i.e., lines connecting data points with the same value). We
show how our method can be used to visualize large data by only
using a sparse subset of it.

Analyzing large datasets and being able to extract meaningful
visual information is a challenge for various scientific visualization
fields. We choose to focus on meteorological data in this appli-
cation, and considering the increase in computational power and
available tools, the information we can obtain has increased expo-
nentially. Methods to quickly process massive amounts of data are
required, to allow scientists to interpret and extract the most rel-
evant information. One method to deal with very dense data is to
choose a subset, that acts as an overview, and then use this global
view of data to find and focus on a specific area of interest at a
higher resolution [KW19, MHS∗20]. In the case of prohibitively
large datasets, such as hourly records of multiple weather parame-
ters, processing solely a subset of the data might be the only way
to manipulate information at such a scale. This facilitates a quicker
understanding of the data at different levels while using less data
and hence, less computational power.

In the field of visualizing meteorological data, an important
problem arises from the numerical issues of projecting information
that exists on the Earth’s surface onto a plane, where at least one
of the following properties has to be sacrificed: distances, angles,
or areas. We bypass this challenge by working with samples di-
rectly on surfaces and allowing for a three-dimensional interaction
and visualization of data. A common way of visualizing various
properties of meteorological data is presented by contour lines (or
isolines) where data points with equal or similar (up to a threshold)
values are connected to represent all the possible points that have
similar data [RBS∗17].

Meteorological datasets, such as the ones provided by the Euro-
pean Centre for Medium-Range Weather Forecasts [ecm], contain
massive amounts of data for every recorded timestep, at a resolu-
tion of 0.25 degrees in both latitude and longitude, with up to 90
parameters such as temperature, humidity, pressure. Analyzing the
entirety of the data at a global level is a tedious and complex task,
and we propose to combine the deformation-free surface represen-
tation with a sparse sampling of the dataset to reconstruct contours
for an easier understanding of global information.

In Figure 15, we use the global temperature values recorded on
31st of March 2024, at midnight, and use a subset of the values
(a quarter of the initial array, by skipping every second and fourth
row) to minimize the amount of data. The texture of the mesh repre-
sents the ground truth temperatures. We then extract the points with
a temperature of 230±0.3K and connect them to obtain the corre-
sponding contour line, only requiring 63 samples to reconstruct the

OursMST

Figure 15: Samples (black) with approximately the same temper-
atures connected using the MST algorithm (left) and our method
(right) to form a contour line (white) for a region with a tempera-
ture of 230±0.3K on the globe, for a single timestep.

isoline. In contrast, the MST algorithm is unable to reconstruct the
curve due to the non-uniformity of the samples. The data we used
is based on data and products of the European Centre for Medium-
Range Weather Forecasts (ECMWF), under CC BY 4.0. license.

6. Conclusions

We have generalized the sampling requirements of closed curves
from the Euclidean plane R2 to Riemannian manifold domains of
arbitrary dimension. By taking inspiration from the literature on
planar curve reconstruction, we designed a new method for recov-
ering the original connectivity from a sparse sampling by biasing
an instance of the traveling salesman problem with a coarse graph,
which exhibits strong theoretical guarantees. We have proved the
effectiveness of our method by testing it in different scenarios and
various applications involving real-world data, showing that it out-
performs the existing previous solution and that it provides a cor-
rect result, while in many cases the state-of-the-art method fails.

As for future directions, we intend to explore possible relax-
ations of the starting graph to offer stronger theoretical guaran-
tees even under adversarial samplings. Furthermore, we notice that
when the sampling conditions satisfy our constraints, the original
reconstruction forms a Hamiltonian cycle inside the SIGDV graph.
Since this path is not guaranteed to be the shortest tour, an algo-
rithm for the TSP could be a sub-optimal strategy and more sophis-
ticated techniques for identifying such a cycle could be worth future
investigation. Another possible avenue of future development could
involve a more compelling approach for handling multiple closed
loops and the exploration of techniques for dealing with more gen-
eral classes of curves, as these could provide an important tool in
pattern extraction, where not all elements are closed smooth curves.
Finally, as the reconstruction of curves in non-Euclidean domains
is a barely explored topic, we identify the absence of a unified val-
idation benchmark for quantitative analyses and we intend to fill
this gap in the future.

www.ecmwf.int
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Appendix A: Proofs

In this appendix, we provide the proofs of all our claims.
Lemma 2. Let C ⊂M be a closed curve on the manifoldM. For
every point p ∈M and every positive real value r ≤ iM(p), if the
r-ball Bp,r centered at p contains at least two points of C, then then
either Bp,r ∩C is a topological 1-disk, or Bp,r contains a point of
Γ(C), or both.

Proof. We denote the intersection between the r-ball and the curve
with F = Bp,r ∩C.

If F is a topological 1-disk, there is nothing to prove.

If F ≠ C and F is not a topological 1-disk, then F must contain
at least two connected components. Let q1 ∈F be the closest point
in F to p, and let f1 be the connected component of F containing
q1. If q1 is not unique, then p ∈ Γ(C) and the proof is complete.
Otherwise, let f2 ̸= f1 be a second closest connected component of
F to p, and let q2 ∈ f2 be the point in f2 closest to p. Let δi(x) =
infy∈ fi dM(x,y) be the distance from each point x to the connected
component fi. Let us consider the geodesic shortest path γ

q2
p , which

is contained in Bp,r by definition of r-ball. We know that at point p
it holds that δ1(p)< δ2(p) and at q2 it holds that δ1(q2)> δ2(q2).
Since the distance functions change continuously, there must be
some point x along the path γ

q2
p such that δ1(x) = δ2(x), where

the closest connected component of F to x changes. If x /∈ Γ(C),
then there must be another point q3 ∈ C such that q3 /∈ f1, f2 and
dM(x,q3) < δ2(x) ≤ dM(x,q2). Using the triangle inequality, we
get that dM(p,q3) < dM(p,x) + dM(x,q3). Hence, we get that
dM(p,q3)< dM(p,x)+dM(x,q3)< dM(p,x)+dM(x,q2). Us-
ing the fact that x lies on the geodesic shortest path between p and
q2, we have dM(p,x) + dM(x,q2) = dM(p,q2), which implies
that dM(p,q3) < dM(p,q2), which contradicts our assumption
that f2, which contains q2, is the second closest connected compo-
nent (since q3 /∈ f1, f2). Thus, x ∈ Bp,r must belong to the medial
axis Γ(C).

If F = C, then the curve C is entirely contained in Bp,r. Let
δC(x) = miny∈C dM(x,y) be the minimal distance from each point
to the curve. We consider the ℓ-neighborhood Tℓ(C) = {x ∈M :
δC(x) < ℓ} of the curve C and the restriction of the neighborhood
Nℓ(C) = {x ∈ Bp,r : δC(x) < ℓ} to the r-ball Bp,r. Since Bp,r is
an open set, for small values of ℓ, the ℓ-neighborhood Tℓ(C) is
topologically equivalent to a d-dimensional solid torus and is en-
tirely contained within Bp,r. Thus Nℓ(C) = Tℓ(C) has genus 1. On
the other hand, Bp,r has finite size, and thus for values of ℓ large

enough Nℓ(C) covers the entire r-ball and hence, Nℓ(C) = Bp,r.
Since r ≤ iM(p), the r-ball Bp,r is topologically equivalent to a
d-dimensional Euclidean ball (whose genus is 0), and so must be
Nℓ(C). Since the curve C is immutable during the growing pro-
cess of Nℓ(C), and no elements are removed while increasing ℓ,
the genus decrease of Nℓ(C) cannot happen via cutting the solid
torus. Thus, for some ℓ there must be a non-contractible curve along
the boundary of Nℓ(C) that collapses in a single point q ∈ Bp,r to
achieve a genus decrease. This means that q must be at a distance ℓ
from at least two different points on the curve, and thus, must be a
point on the medial axis.

Corollary 1. For every point p ∈ C, and for r ≤ ilfs(p), the ball
Bp,r intersects C in a topological 1-disk.

Proof. Let Bp,r be a r-ball centered at p, for some r ∈ R+, that
does not intersect C in a topological 1-disk. If that is the case, then
either r > iM > ilfs(p) or Bp,r contains at least one point m of the
medial axis (by Lemma 2). This would lead to r > dM(p,m) >
lfs(p)> ilfs(p).

Proposition 1. Let S ⊂ C be a sampling of the curve. For every
point p ∈ C, let s0,s1 ∈ S be the samples such that the interval I =
(s0,s1) is the smallest open interval between samples that contains
p. If there exists a point q∈ C not belonging the the closure of I that
is closer to p than both s0 and s1 are to p, then dM(p,q)≥ ilfs(p).

Proof. Let us denote δ = dM(p,q), and consider the r-ball Bp,δ of
size δ and centered at p.

Since s0 and s1 lie outside Bp,δ, p lies inside Bp,δ, and Bp,δ
touches q, then either the intersection F = C ∩Bp,δ has two con-
nected components, or C is tangent to Bp,δ at q.

If F has two connected components, then by Corollary 1 δ >
ilfs(p).

If C is is tangent to Bp,δ at q, then for every ε > 0, the ball Bp,δ+ε

would intersect C in two connected components, meaning δ+ ε >
ilfs(p). Hence, δ≥ ilfs(p).

Corollary 2. Let S ⊂ C be a sampling of the curve, and s0,s1 ∈ S
be two adjacent samples defining an interval I = [s0,s1] ⊂ C. If S
is a ρ-sampling with ρ < 1, then for every point p ∈ I, the closest
sample to p is either s0 or s1.

Proof. Assume the closest sample to p is some si ̸= s0,s1, and let
us denote δ = min(dM(p,s0),dM(p,s1)). Then δ > dM(p,si) ≥
ilfs(p)≥ ireach(I). But by definition of ρ-sampling, δ< ρireach(I),
which contradicts δ > ireach(I) for ρ< 1.

Proposition 2. Let S⊂ C be a ρ-sampling, with ρ< 1. For any two
consecutive samples s0,s1, let I = [s0,s1] be the interval between
them. Then we have dM(s0,s1)< 2ireach(I).

Proof. Consider a point p in the interval I = [s0,s1] such that
dM(s0, p) = dM(s1, p). That point must be at d ≥ 1

2 dM(s0,s1)
from s0, and by definition of ρ-sampling with ρ < 1, d <
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ireach(I) ≤ ilfs(p). By Corollary 2, the closest samples to p must
be s0 and s1, and we have dM(s0,s1)≤ 2d < 2 ireach(I).

Lemma 3. Let s0,s1 ∈C be consecutive samples from a ρ-sampling
S ∈ C, with ρ < 1. The edge e(s0,s1) belongs to the dual Voronoi
graph of S.

Proof. Let I = [s0,s1]⊂ C be the interval of C connecting samples
s0 and s1, and let p∈ I be a point such that dM(s0, p) = dM(s1, p).
We consider the r-ball Bp,r centered at p, where r = dM(p,si) is
the distance from p to its closest sample si.

By Corollary 2, si must be either s0 or s1, yielding r =
dM(s0, p) = dM(s1, p). Then the boundary between the Voronoi
cells of s0 and s1 is not empty (as it contains at least p), and the
edge e(s0,s1) is the dual of their shared Voronoi boundary.

Lemma 4. Let s0,s1,s2,s3 ∈ C be consecutive samples from a ρ,u-
sampling S ∈ C, with ρ < 1 and u < 2. The edge e(s1,s2) belongs
to the Spheres-of-Influence graph of S.

Proof. We split the proof into four cases.

Case 1: If s1 is the nearest neighbor of s2, or vice versa, then the
edge e trivially belongs to SIG.

Case 2: If s0,s3 are the nearest neighbors of s1 and
s2 respectively, the non-uniformity ratio u < 2 imposes
dM(s0,s1),dM(s2,s3) > 1

2 dM(s1,s2), meaning that
dM(s0,s1) + dM(s2,s3) > dM(s1,s2). Then the edge e be-
longs to SIG by definition.

Case 3: Now, suppose neither s0 nor s2 is a nearest neighbor for
s1, but s3 is a nearest neighbor for s2. Then, the distance from s2 to
its nearest neighbor is d2 = dM(s2,s3), and let d1 = dM(s1,si)
be the distance from s1 to its nearest neighbor si. If d1 + d2 ≥
dM(s1,s2), the edge belongs to SIG by definition.

Otherwise, we must have d1 < dM(s1,s2)− d2. Because of the
non-uniformity ratio u < 2, we know that 1

2 dM(s1,s2) < d2 <

2dM(s1,s2), and hence d1 <
1
2 dM(s1,s2). By Proposition 2, d1 <

ireach([s1,s2]) ≤ ilfs(s1). However, since si is not adjacent to s1,
by Proposition 1 we have d1 ≥ ilfs(s1), which contradicts the above
d1 < ilfs(s1).

Case 4: Finally, suppose neither s0 nor s2 is a nearest neigh-
bor for s1, and neither s1 nor s3 is a nearest neighbor for s2. If
that is the case, a sample si must lie at distance d1 = dM(si,s1),
and Proposition 1 requires d1 ≥ ilfs(s1). We also must have a
sample s j lie at distance d2 = dM(s2,s j) from s2, which is the
nearest neighbor of s2, and Proposition 1 requires d2 ≥ ilfs(s2).
If d1 + d2 ≥ dM(s1,s2), then the edge e belongs to SIG by
definition. Suppose then d1 + d2 < dM(s1,s2), and let us de-
note r1,2 = min(ilfs(s1), ilfs(s2)). Proposition 2 requires d1 +d2 <
dM(s1,s2) < 2r1,2. Since d1 ≥ ilfs(s1) ≥ r1,2, we have d2 < r1,2,
which contradicts d2 ≥ ilfs(s2)≥ r1,2.

Theorem 2. Let M be a d-dimensional Riemannian manifold,
possibly with boundary ∂M, and equipped with a geodesic dis-
tance dM :M×M→ R. Let C ⊂M be a curve on the manifold
M, and S = {s1, · · · ,sk} ⊂ C be a ρ,u-sampling of C, with ρ < 1
and u < 2. The edge connecting any pair of consecutive samples is
part of the SIGDV of S.

Proof. By Lemma 3 the edge e belongs to the dual Voronoi con-
nectivity, and by Lemma 4 the edge e belongs to SIG. Then the
edge also belongs to their intersection SIGDV.

Proposition 4. Given a set of rotations R = {ri}k
i=1 in SO(3) and

a set of quaternions Q = {qi}k
i=1 in H such that qi represents the

rotation ri, then the Voronoi decomposition Vor(R,dSO(3)) of SO(3)
w.r.t. the rotations R can be obtained as

Vor(R,dSO(3)) = Vor(Q,dR4)∩SO(3) . (14)

Proof. Let rp,rq ∈ SO(3) be two rotations, and let p =
(pw, px, py, pz),q = (qw,qx,qy,qz)∈H be the two quaternions rep-
resenting them. Let q∗ be the conjugate of q. We know that the
angular distance between rp and rq can be expressed as the angle
of rotation of the quaternion t = (tw, tx, ty, tz) = pq∗, which in turn
is given by 2arccos(tw) = 2arccos(⟨p,q⟩).

We also know that the squared Euclidean distance between p
and q is given by ∥p− q∥2 = ∥p∥2 + ∥q∥2 − 2⟨p,q⟩. Since the
quaternions express rotations, they have unitary norm, meaning
∥p−q∥2 = 2−2⟨p,q⟩. Thus, the angular distance between rp and
rq can be expressed as

dSO(3)(rp,rq) = 2arccos(⟨p,q⟩) = 2arccos

(
1− ∥p−q∥2

2

)
.

Since ⟨p,q⟩ is bounded by −1 and 1 (⟨p,q⟩= ∥p∥∥q∥cos(θ) =
cos(θ), as p and q are unitary), and since arccos(·) is a decreas-
ing function on [−1,1], then for any rotation rw ∈ SO(3) and
its corresponding quaternion w ∈ H we get that dSO(3)(rp,rw) <
dSO(3)(rq,rw) ⇐⇒ ⟨p,w⟩> ⟨q,w⟩, but we also know that ⟨p,w⟩>
⟨q,w⟩ ⇐⇒ ∥p−w∥2 < ∥q−w∥2. Thus, it must be true that

dSO(3)(rp,rw)< dSO(3)(rq,rw) ⇐⇒ ∥p−w∥< ∥q−w∥ .

This proves that the distance functions dSO(3) and dR4 preserve
the distance relationships between rotations in SO(3), meaning that
Vor(R,dSO(3)) = Vor(Q,dR4)∩SO(3).


