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Figure 1: Our tool performs fluid simulations with the Lattice Boltzmann Method (LBM), exporting the geometry of the fluid and rendered
frames from multiple viewpoints at each simulated step. Camera positions are sampled via Fibonacci sphere sampling [KISS15] to ensure
uniform coverage, and exported as metadata.

Abstract
In this work, we introduce an efficient and intuitive framework to produce synthetic multi-modal datasets of fluid simulations. The
proposed pipeline can reproduce the dynamics of fluid flows and allows for exploring and learning various properties of their
complex behavior from distinct perspectives and modalities. We aim to exploit these properties to fulfill the community’s need for
standardized training data, fostering more reproducible and robust research. We employ our framework to generate a set of
thoughtfully designed training datasets, which attempt to span specific fluid simulation scenarios meaningfully. We demonstrate
the properties of our contributions by evaluating recently published algorithms for the neural fluid simulation and fluid inverse
rendering tasks using our benchmark datasets.

CCS Concepts
• Computing methodologies → Physical simulation; Computer graphics;

1. Introduction

Applying the representational power of machine learning to the
prediction of complex fluid dynamics has been a relevant subject
of study for years and is regarded today as an established research
field [LFBC23]. However, the amount of available fluid simula-

tion data does not match the notoriously high requirements of ma-
chine learning methods. Researchers have typically addressed this
issue by generating their own datasets, as in the case of Pfaff et
al. [PFSGB21] and Ummenhofer et al. [UPTK20], only to cite a
few. The obvious consequence of this behavior is an heterogeneous
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distribution of training data across different methods, which in turn
prevents a consistent comparison of the proposed approaches.

Recently, the growing diffusion of datasets for animations has
largely contributed to the enhancement of data-driven models,
streamlining traditional computer graphics challenges and expand-
ing digital artists’ creative possibilities. Notably, skeleton-based ani-
mation datasets, supported by specialized data capture technology,
have become prevalent due to their diverse applications. Prominent
examples include DFAUST [BRPMB17] for human body anima-
tions and DeformingThings4D [LTT∗21] for a wider range of sub-
jects. One really successful application of human motion datasets
was the creation of SMPL [LMR∗15], a skinned multi-person linear
model, which may be used for traditional skinning as well as in a
generative fashion, to sample novel human poses and styles.

In this setting, the introduction of a large-scale dataset of fluid
animations would be largely beneficial to the advancement of data-
driven methods for the dynamics of fluids. However, capturing
intricate fluid deformations contrasts sharply with the goal of pro-
ducing a large-scale dataset, as the task necessitated of specialized,
expensive, and labor-intensive tools [HHL∗05, EUT19].

With this work, we introduce a novel pipeline for the generation
of synthetic multi-modal fluid simulations datasets. By leveraging
a GPU implementation and well-established efficient implementa-
tions of fluids dynamics solvers, our framework is efficient enough
that no data needs to be exchanged between users, except for the
configuration files required to reproduce the dataset. Furthermore,
our procedure allows multiple modalities (e.g., fluid geometry, pho-
torealistic renderings) and is general enough for it to be applied to
various tasks in data-driven fluid simulation. The dataset can be con-
structed using flexible templates, which can be customized through a
configuration file by defining variables and constants such as initial
fluid states, boundary conditions, and simulation parameters. The
templates are extensible to incorporate extra features, like initial
velocities or dynamic force fields. To enforce a better coverage and
uniformity in the data, we generate multiple scenes from the same
template by varying the configuration parameters. We simulate each
scene using a highly efficient GPU-based Lattice Boltzmann simu-
lator [Leh], enabling fast large-scale dataset creation. Our pipeline
also exposed additional features and options, such as multi-view
renderings, various file formats for the exported data, and support to
both Eulerian and Lagrangian simulation data.

This work holds potential for various research areas. We demon-
strate its utility in two key domains that have garnered con-
siderable attention: advancing data-driven fluid simulation mod-
els [XZB24, UPTK20, WXCT19] and tackling inverse rendering/-
surface recovery [CLZ∗22, LQC∗23]. Overall, our work aims to
bridge a long-standing gap in data-driven fluid simulation research,
enhancing community contributions, reproducibility, and systematic
evaluation. Our key contributions are: a) introducing an efficient
framework for generating synthetic, multi-modal fluid simulation
data, capturing a wide range of fluid dynamics (see Figure 1); b)
using this framework to generate three training datasets for distinct
fluid simulation scenarios, providing training data for consistent
future research; c) demonstrating the effectiveness of our datasets
by successfully training state-of-the-art models for fluid simulation
and inverse rendering tasks.

2. Motivation and applications

As mentioned in the previous section, the increasing availability of
large-scale skeleton-based animation datasets boosted the research
on data-drive models for human and non-human animations. We
believe that our dataset generation framework has the potential
of contributing in a similar way to the field of data-driven fluid
simulation, enhancing the reproducibility of methods, simplifying
the distribution of codebases and data, and offering new research
avenues.

Notably, our pipeline supports fluid super-resolution, where
models learn to enhance low-resolution simulations into detailed,
high-resolution outputs. GAN models have been notably effec-
tive in this area [WXCT19, XFCT18], improving super-resolution
in scenarios like smoke flow upsampling and turbulence predic-
tion [BLDL20, BWDL21]. Further research extends this approach
to complex scenarios like multi-phase flows [LM22] and label-free
super-resolution [GSW21]. This methodology also shows promise
in simulating biological systems, indicating its broad applicabil-
ity [FSD∗20]. More in general, one could exploit neural networks
to learn the entire simulation model using the current fluid state
as input, adopting either Lagrangian or Eulerian perspectives. The
Lagrangian approach focuses on particle-based fluid dynamics. Con-
tinuous convolution on point sets has been shown to yield efficient
and robust models [UPTK20]. Enhancements include momentum
conservation [PUKT22] and applying graph neural networks to
particle-based models [LF22], improving performance without sac-
rificing quality. Conversely, the Eulerian viewpoint treats fluids and
properties (like velocity) as functions over space. Innovations here
include generative models for velocity fields [KAT∗19] and using
latent spaces in generative models to produce stable and controllable
simulations [WKA∗20, WBT19]. We refer to Vinuesa and Brun-
ton [VB22] for a comprehensive review of learning paradigms in
fluid simulation. More recent research explores NeRF’s inverse ren-
dering technique [MST∗20] in fluid dynamics. Chu et al. [CLZ∗22]
first integrated Navier-Stokes principles into 4D NeRF training, de-
veloping a dual-network model enforcing physical constraints to
accurately reconstruct smoke density with limited camera views.
NeuroFluid [GDWY22] built on this, adopting a Lagrangian ap-
proach and incorporating physics constraints into volume rendering
for model optimization. Li et al. [LQC∗23] combined Eulerian
and Lagrangian methods, achieving remarkable versatility across
diverse materials. However, these approaches overlook real-world
fluid material properties, treating color as a mere surface texture.
NeReF [WYC∗22] addressed this by formulating a NeRF that con-
siders reflective and transmissive materials, enabling realistic light-
fluid interactions in transparent fluids like water. Finally, Dent et
al. [DYZ∗23] proposed a dynamic simulation method for turbulent
fluids represented as implicit neural fields.

A prevalent problem in the cited research is the absence of a
standardized benchmark dataset, leading researchers to create new
simulation datasets for each method evaluation. Our generation
tool addresses this by enabling: a) export of fluids as both particles
and density fields, b) multi-view renderings of simulations, and c)
efficient dataset regeneration using a configuration file, eliminating
the need to distribute massive volumes of data.

© 2024 The Authors.
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Figure 2: Multiple rendered views for three timesteps of a smoke
plume simulation from the ScalarFlow [EUT19] dataset. The density
field is reconstructed from real smoke captures.

3. Related work

While our dataset is not the first in fluid simulation data, it differs
significantly from prior works like the Johns Hopkins Turbulence
Databases (JHTD) [GKY∗16, PBLM07, LPW∗08]. JHTD offers ex-
tensive, high-resolution data on turbulent flows, targeting geophysi-
cal and engineering applications like meteorology and aerodynamics.
However, its massive scale and detail, with thousands of frames and
billions of voxels per frame, makes it less suitable for computer
graphics and vision applications. In contrast, our contribution is
designed with practicality and adaptability for CG/CV purposes as
a primary focus.

Many datasets accompanying data-driven simulation studies are
limited in terms of availability, data distribution, modality, and
applicability. Pfaff et al. [PFSGB21]’s work, using graph neu-
ral networks [SGT∗08] on triangle meshes, was confined to 2D
due to planar mesh limitations in representing 3D volumes. EA-
GLE dataset [JBN∗23], also mesh-based, focused only on turbulent
wind dynamics influenced by boundary shapes. Notably, very spe-
cific datasets like those provided by Ummenhofer et al. [UPTK20]
were initially minor contributions, but later became foundational
for training methods like those in Prant et al. [PUKT22]. Jakob et
al. [JGG20] proposed a large dataset of 2D laminar and turbulent
fluid parametrized by the Reynolds number for neural flow map
interpolation. Stachenfeld et al. [SFK∗22] introduced volumetric
datasets across different dimensions, modeling real-world chaotic
systems, but they are all limited to this type of representation. In
contrast, our dataset generation framework is specifically tailored
for computer graphics applications, offering additional visual data.

The work most similar in spirit to ours is ScalarFlow [EUT19], a
collection of video captures of real-world smoke plumes dynamics
(see Figure 2), coupled with density field reconstructions computed
by an algorithm proposed by the authors. Despite ScalarFlow be-
ing a large scale dataset (ca. 26 billion voxels of data), its scope
is limited to the real-world capture setting set up by the authors;
when using real data over synthetic would provide no significant
advantage, our generation framework could provide similar data in
arbitrary quantities, without the additional cost of capture. Recent
proposals by Toshev et al. [TA23, TGF∗23] provided contributions
in similar, albeit complementary, directions to our own: their La-
grangeBench tool and data allow to systematically test pre-trained
neural Lagrangian simulations models on small synthetic benchmark
datasets consisting of well-known simulation settings. Such efforts
further highlight the demand for such resources in the field. Com-
bining these works with our framework for the efficient generation
of large-scale datasets could create a full pipeline for training and
evaluating neural Lagrangian simulation models.

Lastly, we mention that using large-scale simulation data for
training data-driven models is not entirely new even outside
the field of fluid dynamics. In particular, synthetic and simu-
lation data are largely used in a wide range of research areas
spanning garment animation [BME20, PLPM20, CPA∗21], pre-
cision agriculture [MKH∗23, KWP∗24], and scene understand-
ing [RRR∗21, KOH∗24].

4. Dataset

In this section, we outline our data generation process, providing
high-level implementation details. Additional and more detailed
documentation is available in our codebase, which will be released
upon acceptance. We use this procedure to create three datasets in
total: two mid-scale training datasets for data-driven fluid simulation
and a set of scenes for fluid inverse rendering algorithms.

4.1. Data generation

Our C++ code library† is built on top of the FluidX3D Lattice-
Boltzmann GPU simulator [Leh]. This was chosen considering its a)
impressive efficiency on mid-range hardware, b) built-in ray-traced
rendering capabilities, and c) wide compatibility with several oper-
ating systems and architectures due to the implementation of GPU
kernels in OpenCL. We refactored the core implementation and
improved the API to expose most functionalities via a newly intro-
duced Scene class. By using this class as a wrapper for FluidX3D,
we are not binding our framework to a specific implementation
or solver, making it easy to replace it in the future. Through the
Scene objects, we represent the parameters and the initial state of
the simulation, facilitating a fine-grained configuration and enabling
inheritance for extending base behavior. For instance, initial fluid
shapes and boundary conditions can be provided through input mesh
files, which are adjustable by means of rigid transformations and
scaling. Enabling specialized features like point-wise external force
fields or inflows/outflows can be easily accomplished by overrid-
ing some of the basic functionalities of the Scene class with new
subclasses.

† Code at https://github.com/daniele-baieri/FSD
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Listing 1: JSON configuration file for our generation procedure.
Variables are sampled and aggregated in order to generate configu-
ration files for individual instances in the dataset. Fluid bodies and
solid obstacles can be specified both as constants and variables, and
sampled according to specific properties of geometric primitives or
meshes (e.g., center, scale, rotation).

"export_root": "path/to/out/dir",

"seed": 123456,

"constants": {

"sim_params": {

"Nx": 256, "Ny": 256, "Nz": 256,

...

},

"obstacles": {

...

},

...

},

"variables": {

"sim_params": {

"nu": {

"type": "linscale",

"vmin": 0.0005, "vmax": 0.005, "steps": 20

},

"sigma": {

"type": "normal",

"mean": 0.001, "std": 0.0005, "nsamples": 20

}

},

"fluids": [

...

]

}

The refactored implementation of FluidX3D serves as a library
for dataset-specific Scene subclasses, which can be designed from
the user and directly accessed from the simulation tool. The param-
eters of these subclasses are entirely configurable using a simple
JSON file (see Listing 1), and the generation procedure is provided
in form of a Python script that creates configuration files and feeds
them to the simulation tool. The script takes various input param-
eters, including global generation parameters (e.g., random seed
for reproducibility), as well as constants and variables for Scene
attributes: constants are preserved in generated instances, while the
variables are sampled based on their selected distribution, which
includes linear intervals, uniform distributions, normal distributions
and collections. Users can also set a maximum scene count, in which
case scene instances are uniformly sampled from all possible com-
binations of variables. This configuration is easily supplied via a
separate JSON file. During the simulation, specific frames can be
extracted both as multi-view renderings and geometric information.
For rendering efficiency, we again rely on the specialized FluidX3D
implementation, as it balances speed over photorealism. Camera ray
are bounced up to two times and use the mean of material BSDF,
rather than sampling them; this way, the light interactions of the
water material we use for fluids can still be displayed, while the
rendering procedure remains really fast, being executed on the GPU
(see Section 5.3). For geometric data extraction, we offer two op-
tions: a) exporting fluids as binary particle arrays, with the number of
particles determined by the configuration file input and b) exporting
the fluid’s density field as a memory-efficient 3D matrix in sparse
coordinate format (COO), stored as a 1D binary array. Despite the

latter method being very memory-efficient (see Section 5.3), select-
ing a specific number of particles may be more convenient at high
resolutions. We provide a Python loader to Numpy arrays for both
file formats.

4.2. Coherent subsets of simulation space

In virtually every application, an important property for a dataset
is to have a reasonably rich distribution of data representing “se-
mantically similar” cases or features. Indeed, the data distribution
must somehow encode that such case or feature has not a specific
appearance.

The generation procedure we described in Section 4.1 is specifi-
cally designed with this property in mind. By defining a parametric
Scene object, we can change the value of the parameters to gener-
ate collections of “similar” (in a fluid dynamics sense) simulations,
regardless of the scale of such collections. In this regard, we used our
framework to introduce two medium scale benchmark datasets based
on well-known fluid dynamics settings. Throughout this section, we
will refer to 3D coordinate systems assuming that the up-axis is the
z direction.

Our first training dataset (obstacles) consists of simulations
displaying a sphere of fluid colliding with varying boundary ge-
ometries under the effect of gravity. We define a cuboid boundary
B = (p,q) enveloping the entire scene, where p{x,y,z} and q{x,y,z}
are the min/max coordinate values for the vertices of B, respectively.
We represent the initial fluid state by a sphere S = (c,r) and the solid
obstacle as a triangle mesh M = (V,F), which we can instantiate
by sampling its center, rotation and size (o,θ,s). In order to ensure
interaction between the two, we place the mass of fluid and the
obstacle on the vertical axis passing through the center of the cuboid
(namely, cx = ox = (qx −px)/2 and cy = oy = (qy −py)/2). We
sample the radius r ∼U(rmin,rmax) and mesh size s ∼U(smin,smax)
as the maximum dimension of its bounding box. Since we want
the fluid above the obstacle to ensure interaction, we sample the
two in the top and bottom halves of the simulation domain, re-
spectively. Thus, we sample cz ∼ U

(
qz−pz

2 + rmax,qz − rmax

)
and

oz ∼U
(

pz +
smax

2 , qz−pz
2 − smax

2

)
, where we choose rmin,rmax,smin,

and smax to be, respectively, the 10%,20%,25% and 45% of the
cuboid’s height qz −pz. Lastly, we randomly rotate M along x to
augment the dataset with additional unique boundary interactions,
i.e., θx ∼ U(0, π

2 ). The geometry of the mesh M is chosen randomly
from a small collection of 5 shapes with varying complexity.

The second dataset, which we refer to as dam-break, is a col-
lection of instances of this well-known fluid dynamics scenario. In
this setting, a cuboid of fluid is placed in contact with the lower
face of a second cuboid boundary B = (p,q), and the scene is sim-
ulated under the effect of gravity. The only variable for our scene
generation procedure is the initial placement of the dam inside
the scene: if we represent the cuboid mass of fluid by its center
and sides, i.e., D = (c,s), we set the y coordinates to span the en-
tire y-axis (sy = qy −py,cy = sy/2) and sample the x coordinates

as cx ∼ U (px +δx,qx −δx) and sx ∼ U
(

smin
x ,min{cx,Nx − cx}

)
,

where we set smin
x and δx to the 10% and the 25% of qx −px, re-

spectively. For the z coordinates, since we require the dam to touch
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Table 1: Real-world scale of the obstacles and dam-break
datasets. Legend: δx,δm,δt → space, mass and time units (respec-
tively). ν → kinematic shear viscosity. σ → surface tension. ρ→
density. g → gravitational acceleration. Remax → upper bound for
the Reynolds number of the simulations.

Real LBM

δx 7.81 ·10−3 [m] 1
δm 4.76 ·10−4 [kg] 1
δt 4.45 ·10−4 [s] 1
ν 2.00 ·10−3

[
m2/s

]
1.46 ·10−2

σ 7.20 ·10−2
[
kg/s2

]
3.00 ·10−4

ρ 1.00 ·103
[
kg/m3

]
1

g 9.81
[
m/s2

]
2.49 ·10−4

Remax 10119 10119

the ground, we only sample the center cz ∼ U
(

pz +δz,
qz−pz

2

)
and

set sz = 2(cz −pz), so that the mass of fluid is in contact with the
ground. Here, δz is set to the 25% of qz −pz.

We choose physical properties of the fluid to achieve: a) rea-
sonable space/time scale, b) water-like behavior, c) stability of the
simulation. The resulting real world scale, coupled with the cor-
responding LBM units, is detailed in Table 1. We fix the simula-
tion domain to have characteristic length L = 2[m] in all dimen-
sions, and select density and surface tension values to be iden-
tical to those of water. Since we are using a LBM, we need to
fix the simulation resolution to obtain the remaining quantities;
we choose N = (256,256,256), which we observed to yield a rea-
sonable tradeoff between quality and efficiency. From the fixed
data, we obtain δx = L/max{N}, and δm = ρ · δx3. To determine
the timestep, we fix the surface tension in LBM units and obtain
δt =

√
σreal/σLBM ·δm. The value is empirically chosen to obtain a

reasonable time scale. In this setting, using the real kinematic shear
viscosity of water (10−6) would dramatically increase the Reynolds
number Remax = (min{N} ·umax)/νLBM (where umax = 1/

√
3 in

LBM) of our simulations, yielding extremely turbulent flows which
can make the simulation unstable. Therefore, we reduce the viscos-
ity to keep the maximum Reynolds number around 104. This value
is large enough to capture a wide range of fluid behaviors, and we
verified ex-post that it yields stable simulations. We give complete
details on the generation of the two datasets in Table 2.

4.3. Hand-crafted multi-view scenes

Another desirable property for a dataset is that it must be easy to
design, extend, and distribute. These requirements collide with the
type and volume of data expected by a dataset of fluid dynamics,
where the already large amount of data for representing a fluid in
a 3D domain must be multiplied by a large number of frames and
scenes.

Nonetheless, with our generation framework we are able to de-
scribe a scene by just using a small JSON file describing the scene
configuration. Users can exchange these lightweight files and rely
on the efficiency of FluidX3D for generating the data in short time.
In this setting, even designing adding other scenes to the dataset
becomes a simple task.

Table 2: Generation data for our neural fluid simulation datasets,
exporting one frame every 0.02s of simulation (i.e., every 42 LBM
steps with δt as in Table 1). The resulting throughput proves the effi-
ciency of our procedure: allowing for a 10% decay in performance,
we could be able to generate a large scale 1mln frames dataset in
∼ 45 hours.

Dataset dam-break obstacles

Generation time (s) 15253 14654
Throughput (FPS) 6.55 6.82
Sampled scenes 200 400
tmax (s) 10.0 5.0
Frame count 100.000 100.000
Frame time (s) 0.02 0.02
Size (GB) 23.2 17.5
Particles 5000 3000

We have used our generation procedure to simulate a limited
set of hand-crafted scenes, primarily intended for training inverse
rendering and surface recovery models. These scenes are not de-
signed to cover a wide spectrum of fluid behaviors but rather serve
as challenging test cases to assess the accuracy of novel methods
and their ability to generalize. Details about the ship scene’s data
are summarized in Figure 1, and comprehensive information on
real-world scale and simulation for each scene is provided in Ta-
ble 3. We simulate all scenes with resolution N = (256,256,256)
and export the results at 60FPS. 10 viewpoints are sampled in the
upper hemisphere via Fibonacci sphere sampling [KISS15], and
each output frame is rendered with resolution 1080× 1080 twice:
once with a water-like material and once with a Lambertian material.
For each camera, a background-only render is also produced, and
the camera parameters for the viewpoints are exported as JSON. The
data totals 20.32GB, and we stress that they can be distributed by
only providing a few MB of mesh files and configuration files.

5. Evaluation

To evaluate our framework, we show how a dataset of fluid dynam-
ics data could be applicable across different applications and for
testing state-of-the-art techniques. Furthermore, to prove that our
pipeline allows for an easier distribution of the data, we analyze
the performance of FluidX3D in generating the data presented in
Sections 4.2 and 4.3.

5.1. Data-driven Fluid Simulation

Among the most attractive characteristic of data-driven models there
is probably their ability to perform very well on a wide range of chal-
lenging tasks. State-of-the-art methods like the Deep Langrangian
Fluid (DLF) model introduced by Ummenhofer et al. [UPTK20]
proved that this data-driven paradigm can be successfully applied
to the prediction of fluid dynamics. We train and evaluate the DLF
model on the datasets described in Section 4.2 to prove that the
ability to produce a large number of variations for the same scene
can be beneficial for successfully training a model.

© 2024 The Authors.
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Figure 3: Samples from a 5 seconds rollout of a DLF [UPTK20] model trained on our obstacles dataset, with unseen initial conditions,
compared to ground truth LBM simulation.

Table 3: Generation time and real-world scale for the scenes in our inverse rendering dataset. ρ and g are as in Table 1 for all scenes. We fix
the reference real world σ = 0.072

[
kg/s2

]
and vary the LBM coefficient for surface tension.

Scene tmax (s) Frames L [m] δx [m] δm [kg] δt [s] ν
[
m2/s

]
σ [LBM] Remax

ball 1.5 90 2.0 7.81 ·10−3 4.76 ·10−4 8.13 ·10−4 5 ·10−4 1 ·10−4 22170
dam 2.5 150 2.0 7.81 ·10−3 4.76 ·10−4 2.57 ·10−4 2 ·10−3 1 ·10−5 17527
duck 1.5 90 2.0 7.81 ·10−3 4.76 ·10−4 8.13 ·10−4 5 ·10−2 1 ·10−4 222
ship 2.5 150 2.0 7.81 ·10−3 4.76 ·10−4 8.13 ·10−4 5 ·10−3 1 ·10−4 2217

Model Ummenhofer et al. [UPTK20] aim to understand fluid me-
chanics by studying particle motion. In particular, a continuous
convolutional network is fed with a collection of particles, each
paired with its features. Each particle is associated with a feature
vector that is a constant scalar of 1, paired with the particle’s ve-
locity, denoted by v, and its viscosity, ν. Therefore, at any timestep
n, a particle pn

i is represented by the tuple (xn
i , [1,v

n
i ,νi]). To com-

pute intermediate velocities and positions, and integrate external
force information, the velocity is listed as an input feature. Using
Heun’s method, the intermediate velocities vn∗

i and positions xn∗
i

for timestep n are then computed as:

vn∗
i = vn

i +∆taext, xn∗
i = xn

i +∆t
vn

i +vn∗
i

2
(1)

where aext represents an acceleration vector, enabling the applica-
tion of external forces like fluid control or gravity. These interme-
diate values are devoid of any particle or scene interactions; such
interactions are incorporated using the ConvNet. For the network
to manage collisions, another group of static particles s j are intro-
duced. These are sampled along scene boundaries and paired with
normals n j as their feature vectors, expressed as s j =

(
x j,

[
n j
])

.
The network performs the function:

[∆x1, . . . ,∆xN ] = ConvNet
({

pn∗
i
}N

i=1 ,{si}M
i=1

)
, (2)

employing convolutions to merge features from both sets of parti-
cles. Here, ∆x serves as a position correction, factoring in all particle
interactions, including collisions with the scene boundary. The cor-
rection is finally used to update positions and velocities for timestep
n+1 with:

xn+1
i = xn∗

i +∆xi, vn+1
i =

xn+1
i −xn

i
∆t

(3)

Experiment and results We train DLF over obstacles, split as
train and validation sets with a 90:10 ratio, which amounts to 360
training simulations (tot. 90k frames) and 40 validation simulations
(tot. 10k frames). Figure 3 shows a qualitative comparison of the
model prediction vs. the ground truth simulation, after training
DLF to convergence (50k total iterations), given an initial state
from the validation set. The model is able to consistently predict
realistic dynamics throughout the simulation, and reach a stable
state coherent with the one shown in the data, proving our data to
be suitable for this application; the only shortcoming of the learned
model is its inability to properly capture viscous behavior, probably
due to the viscosity not being explicitly modeled in its formulation
(eqs. (1) to (3)).

5.2. Inverse Rendering Fluid Simulations

The advent of NeRF-like models gave a massive boost to the re-
search about inverse rendering tasks. Nonetheless, they mostly rely
on multi-view images of the same scene, which can be quite ex-
pensive and time-consuming to obtain. Instead, simulating a single
scene and rendering it from multiple points of view can effectively
provide a large amount of data for testing and evaluating a model at
a more reasonable cost and with less time.

Our method allows the generation multi-view video data, labeled
with camera positions and parameters, which can be used for inverse
rendering tasks. By defining a ∆t and a set of randomly sampled
cameras on the upper hemisphere (see Figure 1), we render the scene
from these viewpoints during simulation. While our data can be used
to train various NeRF-based models, both static and dynamic, we
tested the dataset described in Section 4.3 on PAC-NeRF [LQC∗23].
PAC-NeRF recovers explicit geometric representations and physical

© 2024 The Authors.
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Figure 4: Left: a subset of the views in our duck scene training
data. Right: PAC-NeRF [LQC∗23] reconstruction and rendering
for the same (unseen) views (the background is not learned by the
model, so it was manually composited for this visualization).

properties of dynamic objects in scenes by combining neural scene
representations with differentiable physics engines for continuum
materials.

Model A dynamic NeRF comprises time-dependent volume den-
sity field σ(x, t) and a time-and-view-dependent appearance (color)
field c(x,ω, t) for each point x ∈ R3, and directions ω = (θ,φ) ∈ S2

(spherical coordinates). The appearance C(r, t) of a pixel specified
by ray direction C(r, t) (s ∈ [smin,smax]) is obtained by differen-
tiable volume rendering [MST∗20]:

C(r, t) = cbgT
(
s f , t

)
+
∫ s f

sn

T (s, t)σ(r(s), t)c(r(s),ω, t)ds (4)

T (s, t) = exp
(
−

∫ s

sn

σ(r(s̄), t)ds̄
)

(5)

The dynamic NeRF can therefore be trained to minimize the

Figure 5: PAC-NeRF evaluation on duck. Both rendering quality
and IoU over occupancy grids degrade as the simulation progresses
because the neural radiance field reconstruction gets increasingly
constrained by the physics-based losses. Metrics are only computed
on the masked foreground object.

rendering loss:

Lrender =
1
N

N−1

∑
i=0

1
|R| ∑

r∈R

∥∥C(r, ti)− Ĉ(r, ti)
∥∥2

(6)

where N is the number of frames of videos, Ĉ(r, ti) is the ground
truth color observation.

PAC-NeRF first initializes an Eulerian voxel field over the first
frame of the sequence. It then uses a grid-to-particle conversion
method to obtain a Lagrangian particle field; this is advected, enforc-
ing that the appearance and volume density fields admit conservation
laws characterized by the velocity field v of the underlying physical
system:

Dσ

Dt
= 0,

Dc
Dt

= 0 (7)

with Dφ

Dt = ∂φ

∂t +v ·∇φ being the material derivative of an arbitrary
time-dependent field φ(x, t). Moreover, the velocity field must obey
momentum conservation for continuum materials:

ρ
Dv
Dt

=∇·T +ρg (8)

where ρ is the physical density field, T is the internal Cauchy stress
tensor, and g is the acceleration due to gravity and it is evolved
using a differentiable Material Point Method (MPM) [HFG∗18].
The advected field is then mapped back to the Eulerian domain using
the particle-to-grid conversion and is used for collision handling and
neural rendering. We refer to the original paper for more technical
details.

Experiment and results We trained PAC-NeRF on duck by sub-
sampling a 1s simulation of 1800 frames down to 13 frames with

© 2024 The Authors.
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Table 4: Analysis of resource consumption in terms of CPU memory, GPU memory, scene size and time, varying rendering and simulation
resolution. Values are averaged over 20 repeated runs over the dam scene from the multi-view dataset. Rendering is disabled while gathering
the simulation data. Geometry is exported in sparse density format.

Rendering resolution Simulation resolution
800×800 FHD 2K 4K 643 1283 2563 5123

CPU Memory (MB) 374.4 374.4 374.4 374.4 5.6 46.8 374.4 2995.2
GPU Memory (MB) 1242.4 1244.4 1246.4 1248.4 148.6 270.8 1242.4 9015.2
Exported (MB) 780.35 861.44 912.94 983.42 11.12 83.12 653.2 4110.02
Time (s) 16.97 20.46 21.13 22.48 5.59 7.82 16.05 112.8

a ∆t of ≈ 0.077s. Figure 4 visually confirms that our model gen-
erates accurate renders of simulations, validating our multi-view
data generation for use in inverse rendering techniques within fluid
dynamics. PAC-NeRF applies stricter advection constraints to the
NeRF model compared to other 4D NeRF methods. This enhances
scene dynamics recognition and yields smoother, more realistic
inter-frame reconstructions. However, it may compromise the su-
pervised frame reconstruction quality over time, unlike other 4D
NeRF methods which maintain stable reconstruction quality but may
result in less physically accurate interpolations between simulation
steps. This behaviour is depicted in Figure 5, where we show the
degradation of performance over time for PAC-NeRF on the duck
scene. The figure reports the variation over time of the Peak Signal-
to-Noise Ratio (PSNR), the Structural Similarity Index Measure
(SSIM) [WBSS04], the Learned Perceptual Image Patch Similarity
(LPIPS) [ZIE∗18], and the Intersection over Union (IoU) between
the object masks.

5.3. Generation performance

A major benefit of our framework is the ability to describe a large-
scale dataset by means of just a few MB worth of meshes and JSON
configuration files. This not only makes easy to share and distribute
the data, but also to extend the dataset with new scenes. However,
for this to be a real advantage, producing the simulation data must
be a faster procedure than sharing them.

We measure the runtime for generating the obstacles and
dam-break datasets, and we summarize the results in Table 2.
All scenes are rendered from a single viewpoint at low resolution
(800×800), to offer visual support to the generated data. Our pro-
cedure reaches a throughput of ∼6.5 frames per second, allowing
to generate 100k frames of data in ∼4 hours. We further analyze
our procedure’s runtime and memory efficiency by collecting per-
formance data over multiple runs, varying simulation and rendering
resolutions. The results are reported in Table 4: exploiting GPU
programming massively benefits both the simulation and render-
ing steps, so much so that rendering 150 frames even in 4K only
accounts for 28% of the total computation time. The data also moti-
vates our choice of sparse format for storing density fields: while
4GB per scene may seem a lot at simulation resolution 512, the
dense counterpart would require about 80GB per scene (150 ·5123

floats), i.e., only 5% of the disk memory.

All generations were run on medium-end consumer hardware, to
further solidify the claim that our data can be re-generated locally,

without the need to share entire datasets. Our machine runs Win-
dows 11 over 32GB of DDR4 RAM, an intel core i7 12700K CPU
(3.6GHz), and a NVIDIA RTX4070Ti GPU (7680 CUDA cores).
The data was generated on an SSD drive to minimize disk latency.

6. Conclusions

We introduce a novel framework for the generation large-scale mul-
timodal fluid simulation data. Our pipeline relies on an efficient
implementation of the Lattice-Boltzmann method and a GPU ren-
derer, both encapsulated inside an intuitive, extensible, and simple
interface that allows describing families of fluid dynamics scenes
just by means of a simple configuration file. We have used our
framework to introduce three benchmark datasets for research, and
evaluated them on state-of-the-art methods for data-driven fluid
simulation and inverse rendering tasks, demonstrating the potential
value of our contribution. Finally, we tested the efficiency of our
pipeline, and proved that it can be suitable for the fast generation
of large-scale datasets, effectively avoiding the problem of sharing
large volumes of data. In the future, we plan of further extending
our work by introducing the possibility of simulating other types of
fluids (e.g., non-Newtonian fluids, ferrofluids), as well as expanding
the set of pre-made scene templates and configurations.
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