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Figure 1: An overview of the S4A pipeline: 1) The input of our pipeline is a collection of high-resolution shapes. 2) We perform remeshing to
reduce the complexity of the data. 3) Thanks to the remeshed version of our data, we can efficiently compute correspondences via functional
maps between the shapes of the collection and make them comparable. 4) We can use the registered collection to perform various applications

.
Abstract
Statistical shape analysis is a crucial technique for studying deformations within collections of shapes, particularly in the
field of Medical Imaging. However, the high density of meshes typically used to represent medical data poses a challenge
for standard geometry processing tools due to their limited efficiency. While spectral approaches offer a promising solution
by effectively handling high-frequency variations inherent in such data, their scalability is questioned by their need to solve
eigendecompositions of large sparse matrices. In this paper, we introduce S4A, a novel and efficient method based on spectral
geometry processing, that addresses these issues with a low computational cost. It operates in four stages: (i) establishing
correspondences between each pair of shapes in the collection, (ii) defining a common latent space to encode deformations
across the entire collection, (iii) computing statistical quantities to identify, highlight, and measure the most representative
variations within the collection, and iv) performing information transfer from labeled data to large collections of shapes. Unlike
previous methods, S4A provides a highly efficient solution across all stages of the process. We demonstrate the advantages of our
approach by comparing its accuracy and computational efficiency to existing pipelines, and by showcasing the comprehensive
statistical insights that can be derived from applying our method to a collection of medical data.

CCS Concepts
• Computing methodologies → Shape analysis; • Theory of computation → Computational geometry;
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1. Introduction

The analysis of shape deformations is a fundamental task in numer-
ous scientific and engineering fields, particularly in medical imag-
ing, where understanding the variability of anatomical structures is
crucial for both accurate diagnosis and treatment planning. Statisti-
cal shape analysis aims to quantify and analyze these deformations
across a collection of shapes, providing insights into the underly-
ing patterns and variations. However, medical data often come in
the form of very dense meshes, which complicates and limits the
application of traditional geometry processing techniques in the
context of high resolution meshes. These methods could greatly
assist in various task in the medical field, including not only sta-
tistical shape analysis but also applications like organ shape seg-
mentation, reconstruction, and alignment, by leveraging the rich
information contained in 3D representations. However, these stan-
dard approaches often struggle with efficiency and scalability when
dealing with large and complex datasets, which is typical of medi-
cal applications, making them not feasible and not usable.

To address these challenges, spectral geometry processing has
emerged as a powerful tool for analyzing shape collections. Spec-
tral methods are particularly effective at handling high-frequency
variations, which are common in medical datasets due to noise,
acquisition artifacts, or natural anatomical geometry of structures.
By operating in the spectral domain, these methods can provide a
compact and informative representation of shapes, facilitating more
efficient and robust analysis. Despite the potential of spectral ap-
proaches, there remains a need for a comprehensive pipeline that
can efficiently perform all steps of statistical shape analysis on large
volumes of high resolution data, starting from the establishment of
correspondences within the collection of shapes to the computa-
tion of meaningful statistical quantities. The establishment of such
a workflow could impact the way statistical shape analysis is per-
formed in the context of large shape collections with high resolu-
tion meshes, including the clinical field.

In this paper, we propose S4A, an innovative method that lever-
ages spectral geometry processing to perform statistical shape anal-
ysis on dense shape collections with high efficiency. The proposed
method operates in three main stages: (i) it finds correspondences
between each pair of shapes in the collection; (ii) it defines a com-
mon latent space that encodes the deformations among the entire
collection; (iii) it computes statistical quantities that highlight and
measure the most representative variations within the input collec-
tion. This comprehensive approach ensures that S4A not only cap-
tures the detailed variations among shapes but does so with high
accuracy and a level of computational efficiency that outperforms
existing methods. Moreover, S4A represents an efficient building
block for various tasks in shape analysis, from keypoint detection
to segmentation transfer.

To summarize, our contributions are threefold. On one side, we
introduce a novel pipeline that integrates spectral geometry pro-
cessing techniques for the efficient analysis of dense and com-
plex shape collections. At the same time, we provide an extensive
evaluation of our method against existing approaches, demonstrat-
ing superior performance in terms of both accuracy and computa-
tional efficiency. Finally, we explore the practical applications of
our method on real medical data, showing how S4A can provide

valuable statistical insights into anatomical variability and facili-
tate the transfer of meaningful information, such as segmentation
labels and anatomical landmarks.

2. Related work

2.1. Statistical shape analysis

Statistical Shape Analysis (SSA) applies mathematical and statis-
tical methods to analyze and quantify the geometrical properties
of shapes, for generating shape comparisons, averages, probabil-
ity models, and hypothesis tests, that are particularly relevant in
biomedical and anatomical contexts [HM09, MBT∗23]. Central to
SSA is shape modeling, which captures shapes in a quantitative
framework, enabling the measurement of shape differences, esti-
mating mean shapes (intuitively a purely algebraic template where
functions from all shapes get averaged out [HAGO19]), and testing
for variability and clustering. Tools for statistical shape analysis au-
tomate the process of establishing point correspondences across a
set of shapes by solving an optimization problem that defines these
correspondences. Once the shapes are aligned within a common
coordinate system, techniques like principal component analysis
(PCA) help uncover the key variations within shapes [SG02] and
deformations between shapes are often studied using diffeomor-
phometry, which preserves smoothness in the transformation.

2.2. Spectral geometry processing

Given a 3D mesh, which consists of a connectivity structure and ge-
ometry associated with its vertices, the connectivity captures some
of the correlation between the vertex positions in the space. One
approach to extract this correlation is to express the coordinate
functions x, y, and z as a linear combination of a small number of
basis vectors. This framework, well described by Taubin [Tau23],
forms the foundation of spectral geometry processing. Central to
this approach is the Laplace-Beltrami operator, which allows the
decomposition of the geometry of a shape into its spectral compo-
nents via its eigenfunctions and eigenvalues, producing an orthog-
onal set of smooth basis functions ordered by frequency [Lev06].
Each eigenvalue acts as the frequency of the corresponding eigen-
function, with most of the geometric signal energy concentrated in
low-frequency components [LZ10].

Shape correspondence The problem of shape correspondence has
been a widely investigated research topic in recent years. For
an in-depth treatment of this topic, we refer to [Sah20]. Our re-
search is closely aligned with the functional map framework, ini-
tially introduced by [OBCS∗12] . This framework leverages spec-
tral geometry processing to address the correspondence problem
efficiently. In this approach, each correspondence is represented
as a compact linear map between real-valued functions defined
on the surfaces of the shapes, known as a functional map. Har-
nessing this representation, the map can be efficiently solved us-
ing linear optimization techniques. A comprehensive overview of
this area is provided in [OCB∗17]. This seminal work inspired
a full area of research, applying the concept in various con-
texts [EBC17, RCB∗17, MMRC18, MMO∗21], including machine
learning applications [DSO20,MRMO20] and shape analysis tools
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[HAGO19, HCO18]. Notably, [MRR∗19] presents an efficient re-
finement method to enhance the accuracy of given functional map
correspondences. The efficiency of the functional map framework
offers significant advantages in scenarios requiring rapid data pro-
cessing, and so it represents a fundamental block of our method.

2.3. Medical Data

State-of-the-art methods in computer graphics and computer vision
generally do not target 3D medical data, which tend to be com-
plex, dense, and yet not widespread. However, some works have
attempted to address clinical challenges using spectral geometry
and statistical shape analysis, as in [MMS∗16] and [MBT∗23]. The
translation of these tools to the clinical context offers many advan-
tages, including more accurate diagnosis through the detection of
morphological changes, the ability to use computationally efficient
algorithms on sparse manifolds, and the utilization of data that are
less prone to vulnerability. Moreover, to encourage the translation
of computer graphics and computer vision methods into the clinical
context, a medical imaging dataset, namely MedShapeNet, is pub-
licly available. This dataset provides an extensive collection of 3D
shapes of various anatomical structures extracted from real imaging
data of both pathological and healthy subjects [Li23].

2.4. Scalable methods

An important aspect of algorithms that impact both the graphic and
the medical community is the need for scalable methods to pro-
cess a large quantity of high-resolution data. Strongly related to
our approach are the methods of [MO23] and [MBRM24]. Both
methods propose pipelines to compute correspondences based on
the functional map approach for high-resolution meshed. More-
over, [MBRM24] performs meshing of the surfaces, providing not
only good correspondences but also triangulations able to preserve
the geometric properties of the shapes. Our paper works in this di-
rection, providing a pipeline that enables data analysis on shapes at
very high-resolutions.

3. Background

This section introduces some background notions and the notation
we adopt in the following.

3.1. Discrete surfaces

In this paper, we refer to shapes as 2-dimensional smooth mani-
folds embedded in R3, which we indicate as M ⊂ R3. We refer
to [dC92] for any details about the continuous representation of
these objects. In the discrete setting, we represent M as a triangu-
lar mesh M= (VM,TM), where VM is the set of n vertices, TM is
the set of faces (i.e., ti jk ∈ TM if and only if there exists a triangle
connecting the vertices vi,v j,vk ∈ VM). We store the 3D coordi-
nates of the vertices in VM in a matrix XM ∈ Rn×3. Each row of
XM corresponds to the position in the 3D space of a vertex of M.

3.2. Shape matching

The input of a shape-matching task is usually composed of two
discrete meshes M and N . Assuming an existing unknown corre-
spondence T : VN → VM between M and N exists, the goal of
shape matching is, given M and N , to estimate this correspon-
dence. The estimated map T̄ has to be as close as possible to T ,
which means that T̄ should assign to each vertex y ∈ VN a vertex
on M that is geodesically as close as possible to the one associated
by T . We represent a correspondence either as a vector of vertex
indices of size nN or as an nN × nM matrix Π such that Πi j = 1
if T (vi) = v j and 0 otherwise.

Some shape-matching pipelines require a set of input landmarks,
meaning couples of points (y ∈ VN ,x ∈ VM) in correspondences,
such that T (y) = x.

3.3. Functional maps

Given a pair of shapes M and N and a ground truth correspon-
dences T : VN →VM, the functional map framework [OBCS∗12],
instead of estimating T directly, searches for a correspondence
among functions defined on M and N . In the discrete setting, a
real-valued function f defined on the surface of the shape M is
given by a vector that associates to each vertex x ∈ VM a value
f (x) ∈ R. The space of such a function is called F(M,R).

Functional maps build upon the observation that a point-wise
map T induces a linear operator TF : F(M,R) → F(N ,R) that
maps functions defined on M to functions defined on N via the
composition:

TF ( f ) = f ◦T , ∀ f ∈ F(M,R) . (1)

Given a set of orthonormal functions, namely a basis for the
functional spaces Φ = {φ}i and Ψ = {ψ} j for F(M,R) and
F(N ,R), respectively, we can write

g = TF ( f ) = TF

(
∑

i
aiφi

)
= ∑

i
aiTF

(
φi
)
=

= ∑
i

ai ∑
j

c jiψ j = ∑
ji

aic jiψ j = ∑
j

b jψ j ,

where a⃗ and b⃗ are the coefficients of f and g for the basis Φ and
Ψ respectively. The c ji is computed as the projection of TF (φi) on
ψ j and depends only on TF and the two bases. Therefore TF can be
compactly represented by the matrix C such that b⃗ =C · a⃗.

In practice, only the first k atoms of the bases are used, trun-
cating the series after k coefficients. Notably, k is independent of
the number of vertices n in the meshes and usually k ≪ n. Thus,
matching two shapes in the functional map framework involves es-
timating a matrix C of size k× k. The optimization consists of rep-
resenting features, such as landmarks and descriptors as functions
on M and N , finding the functional map C that best preserves these
functional alignment constraints in the least squares sense, we re-
fer to [OCB∗17] for a detailed description on the optimization of
the functional map. Then, once the functional correspondence has
been estimated, we can extract the corresponding point-wise map.

When truncating the basis for F(M,R) to size k, we store it in
a matrix ΦM, where each column is a basis atom represented as a
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vector of real values, making ΦM of size n× k. Each row of ΦM
corresponds to the coefficients in the basis ΦM of a Delta function
centered at x. Therefore, Φ

T
M contains the coefficients of all Delta

functions of M as column vectors.

Functional maps estimate a mapping between functional spaces
built over M and N , and this needs to be converted into a
point-wise map T̄ : VN → VM. A simple solution, proposed in
[OBCS∗12], consists in finding, for each column of Φ

T
N , the near-

est neighbor in the columns of CΦ
T
M, such that

TNM = KnnSearch(ΦN ,ΦMC⊤) . (2)

The full functional map pipeline for shape matching, as de-
scribed in [OBCS∗12], involves three steps: (1) selecting a trun-
cated basis of size k for each mesh, (2) determining the matrix
C ∈ Rk×k that optimally preserves certain functional constraints,
and (3) converting the functional map C into a dense point-wise
map T̄ .

The functional map representation of the correspondence helps
minimize the complexity of the problem, but it creates a trade-off
between the optimization’s complexity and the solution’s accuracy.
diverse methods have the goal of increasing the solution accuracy,
starting from a low-dimensional initial map. The ZoomOut refine-
ment [MRR∗19] for instance, performs spectral upsampling, itera-
tively converting the functional map to its point-to-point counter-
part, while increasing the basis dimension.

3.4. Collection of Shapes

The application of the functional map approach can be extended
from pairs to collections of shapes, which we will indicate as
{Mi}N

i=0. A notable work in this direction is the Consistent
ZoomOut algorithm [HRWO20]. In this work, the authors perform
spectral refinement on a collection of shapes exploiting the method
from [MRR∗19], building a functional map network (FMN), in
which the nodes are the shapes and the edges are represented by
the functional maps. In this way, it is possible to enforce cycle con-
sistency on the maps and refine the correspondences taking into
account all the shapes of a collection.

We stress that, to perform the refinement stage, the algorithm
computes a consistent latent basis for each shape {Yi}N

i=0 and that
we can retrieve a pointwise correspondence by performing a nearest
neighbor search between consistent latent bases, as

TMiM j = KnnSearch(Yi,Y j) . (3)

3.5. Shape difference operator

A useful notion in this context is the shape difference operators
proposed in [ROA∗13,HRA∗19]. This operator has the goal to rep-
resent the intrinsic distortion between shapes. Given a couple of
shapes M, N and a given map CM,N [HAGO19], defines the area-
based shape difference operator as D =CT

MNCMN . Considering
a collection of shapes and the introduction of the consistent latent
basis Yi, we can rewrite the difference operator as Di = Y T

i Yi. This
operator has some useful properties since it allows to represent an
arbitrary shape Mi in the collection via a fully-intrinsic compact
matrix.

3.6. Statistical Shape analysis

As well explained by [SG02, HM09], there are numerous poten-
tial applications for modeling the shape variation. Considering a
collection of shapes with a certain degree of correlation between
the faces and vertices of each mesh, we can assume that statistical
methods can capture and explain the variation within the collection.
Consequently, a shape representation can be formulated to account
for the correlations between points. For instance, if some points ex-
hibit minimal variation, encoded as deformation in 3D space close
to zero, then we can consider them fully correlated. This observa-
tion enables us to reduce the dimensionality of the data to explain
deformations.

Principal Component Analysis In this paper, we utilize the PCA
as a tool for performing statistical shape analysis, derived using
linear algebra, to achieve dimensionality reduction. As done in
[ROA∗13] we first vectorize the area based and conformal shape
difference matrices, then we apply PCA. This dimensionality re-
duction technique linearly transforms the data in a new coordi-
nate system, where the new directions, also called principal com-
ponents, capturing the largest variation in the data. Specifically, in
our task, each principal component captures the largest deforma-
tion among the brain shapes. It is important to remark that these
principal components are orthogonal to each other, representing a
portion of the total variation. By retaining only the first L principal
components, it is possible to represent the original data in a lower
dimensional space.

4. Proposed method

The goal of our method is to perform statistical shape analysis on
a collection of high-resolution geometric data {Mi}N

i=0, proving
that it’s possible in a reasonable amount of time utilizing a low-
resolution strategy.

Our pipeline takes inspiration from the method of [MBT∗23],
in which the authors conduct a statistical shape analysis on medi-
cal data collection in a functional map-based pipeline. This work
shows the efficacy of spectral methods in conducting statistical
analysis of geometric deformations within a collection of shapes.
However, this method does not scale well to high-resolution data:
this problem led us to build S4A.

4.1. Pairwise Scalable Registration

To facilitate statistical shape analysis, the first step of our method
requires computing non-rigid correspondences between each pair
of shapes within the collection. Despite being a well-studied prob-
lem, accurately and efficiently matching two high-resolution shapes
is not trivial.

As mentioned in Section 3, an efficient and flexible way to per-
form correspondences between shapes is the Functional Map ap-
proach. Nevertheless, when applying this method to real-world
high-resolution shapes, the computation of the needed geometric
operators can be unstable and unreliable, since these data often re-
sult in irregular or imperfect meshes. Moreover, they often do not
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satisfy the manifoldness assumption of the shapes on which Func-
tional maps rely. Recently Rematching [MBRM24] and Scalable
Fmaps [MO23] propose two methods to tackle this problem.

Our pipeline relies on the work of [MBRM24], in which each
original shape M is remeshed to a low-resolution version M̃,
which preserves the key geometrical features of the original. Along
with these remeshed shapes, the method computes an operator
U ∈RnM×nM̃ , This operator, which we will refer to as the Projec-
tion operator, has the role of projecting the discretization of each
scalar function f̃ ∈ F(M̃i,R) back to its high-resolution counter-
part f ∈ F(Mi,R). This allows us to reduce the mesh size by over
90% without losing any essential geometric information, as shown
in the result section.

Leveraging the remeshed shape and this operator, we can com-
pute a functional map C between the remeshed version of two
shapes, which is then converted into a high-resolution point-to-
point correspondence T . This latter task is achieved performing
nearest neighbor between the columns of the projected basis, as

TMN = KnnSearch(UN φN ,(UM(φMC⊤))) . (4)

This approach allows to accelerate the computation of correspon-
dences between real-world dense shapes.

All the steps of our pipeline can also be easily adapted to the
method of Scalable Fmaps [MO23]. Instead of a remeshed version
of the shape, Scalable Fmaps provides a pipeline to compute a low-
resolution Functional map and a projection operator similar to the
one from Rematching. We provide an extensive comparison of the
two methods in Section 5.

On these premises, our registration pipeline has the goal of com-
puting accurate and efficient maps, merging both rigid and non-
rigid registration techniques. It can be summarized as follows:

1. Remesh the high-resolution input shapes into lower size meshes
M̃,Ñ

2. Rigidly align the two shapes via the iterative closest point (ICP)
algorithm.

3. Sample 10 points from the source shape and extract 10 corre-
sponding points on the target shape, performing nearest neigh-
bors among the 3D coordinates. These pairs of points will serve
as landmarks to initialize the functional map.

4. Optimize for a Functional map CM̃Ñ of dimension k× k

Performing this pipeline, we can efficiently initialize a functional
map between a pair of shapes. We stress that this functional map,
despite being computed on the low-resolution pair of shapes, is a
good functional map also for the high-resolution shapes. In Fig-
ure 2 we show an example of an initial functional map computed
with this pipeline and their typical behavior with quasi-spherical
and symmetrical shapes.

Afterwards, the map can be transformed into a point-to-point
correspondence as follows:

1. we apply the ZoomOut algorithm [MRR∗19] to upsample the
map until K > k efficiently;

2. we convert the obtained map to a point-to-point correspondence
between the two original shapes using the projection operator,
as explained before.

CMN
φ1 φ2 φ3 φ4

Figure 2: Left: an example of a Functional map between two
remeshed shapes from our dataset. Right: the first 4 non-constant
bases are visualized as functions over the shape surface. We note
that the second and the third basis are switched between the two
shapes. This behavior is typical in cases in which the shape is sym-
metrical, and it is represented in the first 4x4 submatrix of the func-
tional map.

With these steps, we can obtain reliable high-resolution point-
to-point correspondences. Moreover, the first part of the pipeline
can serve to initialize functional maps to perform spectral statistical
shape analysis, as we will describe in the next section.

4.2. Scalable statistical shape Analysis

Mean shape computation. From the previous section, we know
how to extract pairwise low-frequency functional maps between
the pairs of a collection of shapes. Given a collection of high-
dimensional shapes, we can instantiate a Functional Map network
by computing the map on the edges as described before. In this way,
we can follow [MBT∗23] to perform statistical shape analysis. In-
deed we can perform Consistent ZoomOut [HRWO20] to upsample
the functional maps, enforcing cycle consistency within the maps
of the collection and obtaining a set of maps of dimension K ×K.

We have found that a naive application of Consistent ZoomOut
leads to unsatisfactory refinement. This behavior is caused by the
initial maps, which are too noisy to return good refinement. Better
results can be obtained by performing a step of the ZoomOut algo-
rithm in advance. Projecting the initial maps to the space of Maps
which represents a permutation helps the refinement stage. Once
we get high-frequency, cycle-consistent maps, we can perform our
analysis. The first step is to find the median shape of the collec-
tion. Thanks to the refinement step of [HRWO20], we can compute
a limit shape in the spectral domain. However, since this does not
represent a real shape in the collection, we can select the shape that
is the most intrinsically similar to this latent mean shape. In order
to do so [MBT∗23] introduces a metric to measure the intrinsic dis-
similarity of each shape of the collection between this latent mean
shape, which is:

Eintrinsic(Mi) = ∥Di − I∥H2
0
, (5)

where Di is the shape difference operator [HAGO19], I is the iden-
tity matrix of dimension K and ∥ · ∥H2

0
the norm in the Sobolev

space [ROA∗13]. Thus, we select as the median shape the one that
minimizes this energy, which we indicate as M̄.
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We stress that all these steps are performed on the functional
space, and so they do not depend on the discretization of the origi-
nal shape.

Shape Deformation Analysis. After identifying the median
shape, we use it as the most representative shape of our collection.
We consider this shape as a template shape for our collection. In
order to perform statistical analysis, we register all the shapes of
our collection to this template, and compare the deformation with
respect to it.

To achieve this, we must extract point-to-point correspondences
between the shapes. In [MBT∗23] this correspondence is obtained
by

TM̄Mi
= KnnSearch(YM̄,YMi) , (6)

where YMi are the consistent Latent basis that we extract from the
network, as described in Equation (3)

We remark that, since we computed spectral basis from the
remeshed shape, this point-to-point map is a map between the
remeshed version of the shapes of the collections. We can use two
strategies to retrieve a correspondence between the original high-
dimensional shape.

• The first strategy is to compute low-resolution correspondences
using the [MBT∗23] original framework, using equation (3),
then compute the respective pairwise functional map, and then
convert it to the high-resolution correspondence using the pro-
jection operator on the basis, as in equation (4). We will refer to
this approach as the standard one.

• The second possible approach is to use the projection operator
directly on the consistent latent basis Yi, to compute

TM̄Mi
= KnnSearch(UM̄YM̄,UMiYMi) (7)

Indeed, the consistent latent basis can be seen as scalar func-
tions defined on the shape’s surface. This second approach is
much more efficient than the first one since it requires less near-
est neighbor search in a high-dimensional space. We will refer to
this approach as ours.

Having the pairwise correspondences between the median shape
and the other shape of the collection, we can define statistics that
represent the deformation of each shape of the collection. For each
Mi we compute

di(x) = x−T H
M̄Mi

(x), ∀x ∈ M̄ , (8)

which is the displacement field between the point of the mean shape
and the corresponding points on the target shape.

Projecting this displacement on the spectrum of the mean shape
via UMφM(UMφM)†di we get a smooth version of the statistic
and we can perform shape analysis on this feature. In the result
section we will how to use this statistic to perform PCA and other
analysis on the shape variation within the dataset.

4.3. Other applications

Other than being a good tool for analyzing deformations in a collec-
tion of shapes, our pipeline can also be used to efficiently register

the entire collection to a fixed template. Indeed, if we have access to
a template shape MT , matching this to the median shape of the col-
lection can lead to a template to mesh registration of the full dataset.
Having a set of shapes registered to a fixed template can be benefi-
cial to transfer information, such as segmentation, between shapes.
Moreover, our pipeline can be exploited to produce new training
data reducing the data scarcity for training, which is common prob-
lem regarding 3D medical data. The segmentation and anatomical
landmarks are just example of supervised data that can be extended
to a given collection through the registration step. In the future, ad-
ditional information, such as curves and displacements, could be
transferred using the same process.

5. Results

5.1. Experimental Settings

Dataset. The present study relies on a collection of N = 51 tri-
angular meshes of tumored brains from the MedShapeNet dataset.
These data represent the outer membrane, namely the dura mater,
of brains, where some shapes exhibit alterations due to real tumors
and others due to lesions synthetically generated using generative
adversarial networks. This shape collection presents several inher-
ent challenges: the meshes are dense, with the average number of
vertices across shapes exceeding 100k, some shapes have discon-
nected components, and the majority exhibit artifacts, primarily due
to the acquisition and reconstruction process. At the same time,
the dataset provides shapes having similar a 3D embedding. In the
shape matching setting, this framework represents a facilitated con-
dition that allows a proficient registration even with simple, extrin-
sic methods, such as ICP. More challenging conditions taking into
account non-similarity among shapes embedding will be consid-
ered in future work.

Implementation Details. We base our implementation on the
PyFM library and it is based on CPU computations. The resolution
of the low-dimensional meshes has been set around 6000 vertices.
The dimension of the functional Map is set to k = 20 for the initial
maps, and to K = 100 for refined maps. The functional map net-
work can have, to make it a clique, a maximum number of edges
of 1275. To optimize computational cost, we reduced the number
of edges to 500, while still ensuring that the graph is connected.
This choice of parameters is the same for all the experiments. S4A
is executed on a machine equipped with an AMD Ryzen 7 5800H
processor (3.20 GHz), 16 GB RAM, and running Windows 11 (64-
bit).

Metrics. To compare the proposed method we consider some met-
rics to evaluate the accuracy of the estimated correspondences.
The standard benchmarks for shape matching provide ground truth
correspondence, to compare the estimated ones. However, in our
dataset, as common with medical data, we do not have access to
ground truth correspondences, and so we are going to perform
an unsupervised analysis considering some reconstruction metrics.
Given two shapes M,N , we consider the following metrics:

© 2024 The Authors.
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• Chamfer distance:

Cham f er(M,N )=
1

nM
∑

p∈M
min
q∈N

d(p,q)+
1

nN
∑

q∈N
min

p∈M
d(q, p)

(9)
• Hausdorff distance:

Hausdor f f (M,N )= max
p∈M

min
q∈N

d(p,q)+
1

nN
max
q∈N

min
p∈M

d(q, p)

(10)
Where d(q, p) is the Euclidean distance between the two.

These metrics compute the distance between the points of two
shapes, and we apply them to M and the image TNM(N ) of the
estimated map.

Furthermore, we consider the Dirichlet energy that evaluates the
geometrical smoothness of the estimated map. Given a function f ∈
F(M,R), the Laplacian operator LM and the mass matrix AM,
the Dirichlet energy of f is defined as

Dirichlet( f ) = fT AMLMf . (11)

In our experiment, we compute the sum of the energy of each co-
ordinate of the correspondence image TMN (M).

5.2. Pair of High-Resolution Shapes

We selected a shape from our dataset as a reference, paired it with
five other shapes being representative of the dataset and perform
shape registration using five methods. We measured and recorded
the computational time required, some reconstruction metrics, and
qualitative results to evaluate their performance comprehensively.

The methods under comparison include k-nearest neighbors
(kNN), ZO, FMAPS combined with ZoomOut (FMAP+ZoomOut),
Scalable Functional Map (SCALABLE), and Rematching (RE-
MATCH). The computational time is recorded for each registration
method to understand the computational efficiency, while recon-
struction metrics such as alignment accuracy and structural consis-
tency are used to quantify the quality of the registration. Addition-
ally, qualitative assessments are performed to provide a visual and
interpretative evaluation of the registration results. The results are
summarized in Table 1.

It is important to stress that the application of all pipelines re-
quire a preprocessing step for cleaning meshes, avoiding, for ex-
ample, disconnected components and non-manifoldness. This is ex-
plicitly done for all the methods, while in our pipeline this is part
of the remeshing step, in which the shape is remeshed to a fixed
lower number of vertices, 6000 in our case. For fair comparison of
the whole pipeline, we report the overall computational time, con-
sidering the shape loading and alignment part, the optimization for
the map computation and, if available, the refinement of the map,
and rescaling step in case of scalable methods. This steps compar-
ison is outlined in Figure 3, with the exclusion of the negligible
shape loading and cleaning part. Moreover, the reported runtimes
consider a CPU implementation.

From the analysis of the results, we can derive some insights and
comparisons of the above approaches. K-Nearest Neighbors (kNN)
does not perform very well for shape registration in this context.
This method operates solely in the 3D ambient space, which leads

METHOD TIME Chamfer Hausdorff Dirichlet
kNN 9.51 0.22 0.41 0.16
ZO 301.97 0.0035 0.0341 1.3

FMAP+ZO 292 0.0031 0.026 0.93
SCALABLE FM 159.9 0.0035 0.028 0.85

RE-MATCH 20 0.0023 0.01 4.5

Table 1: Processing time, expressed in seconds, and reconstructive
metrics of the five methods compared. Dirichlet energy is reported
in scale 1012.

to a significant loss of intrinsic expressivity. Consequently, the reg-
istered shapes often lack the necessary detail and accuracy, making
kNN an unsuitable choice for high-fidelity shape registration tasks,
even though it requires very little computational costs. On the other
hand, ZoomOut and FMAPS+ZoomOut operate in the intrinsic do-
main, however they both exhibit high computational costs, primar-
ily due to the necessity of computing the Laplace-Beltrami (LB) ba-
sis on high-resolution meshes. While these methods can potentially
yield accurate results, their computational expense makes them im-
practical for large-scale or time-sensitive applications, in particular
in case of wide shapes collections. The Scalable method strikes a
balance between efficiency and effectiveness, providing reliable re-
sults, comparable to the two aforementioned methods, but without
incurring excessive computational costs. Rematching appears to be
the method outperforming in both registration accuracy and run-
time, relying on a fast preprocessing in which shapes are remeshed
and basis computed on low resolution meshes. Its ability to deliver
accurate registration in less than half of a minute makes it suitable
for practical applications where both time and accuracy are critical
considerations.

To sum up, the analysis reveals that while kNN is inade-
quate for detailed shape registration, methods like ZoomOut and
FMAPS+ZoomOut, though accurate, are prohibitively expensive in
terms of computation. In contrast, Scalable and Rematching meth-
ods, working with a low resolution embedding and then scaling
back to the original resolution, offer a promising balance, achieving
efficient and accurate shape registration suitable for various practi-
cal scenarios, with Rematching being the most efficient solution.

5.3. High Resolution Shape Collections Registration

In this section, we compare the performance of the proposed
method’s pipeline using both the Rematching [MBRM24] and
Scalable [MO23] variants. The goal of this analysis is to determine
the most effective approach for high-resolution shape registration
and to evaluate how each variant integrates high-resolution regis-
tration with statistical spectral shape analysis, as outlined in the
Method section 4.

Breaking down the computational time,we subdivide the method
in three blocks. The first block of our pipeline is the computation
of the basis an the functional map network initialization,This step
of the pipeline taken approximately 18 minutes for the Rematch-
ing approach and 20 minutes for the Scalable method. Next, we
perform Consistent ZoomOut refinement, and the process takes 22
minutes with rematching and 27 minutes with Scalable. At this

© 2024 The Authors.
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Chamfer Time(min)
Standard Ours Standard Ours

SCALABLE 0.0230 0.0212 60.45 13.59
RE-MATCH 0.0234 0.0212 57.38 12.03

Table 2: Comparison of the Scalable and Rematching methods in
terms of Chamfer Distance and computational time. The two meth-
ods are evaluated at high resolution, thus in the table is provided
also a comparison between the two pipelines to extend the pipeline
at the original shape.

point, after the identification of the mean shape, we can compute
the point-to-point correspondences between the mean shapeand the
other shapes of the collection. It is important to highlight that both
methods converge to the same median shape.

Once a satisfactory low resolution point to point correspondence
is obtained, the subsequent task addressed to our pipeline is to cor-
rectly extend the functional mapping (matching) to the same brains
but at high resolution. At this point, we calculate the average Cham-
fer distance between each mesh and the template. The results of
our comparative analysis are summarized in Table 2. The table pro-
vides a detailed overview of the performance metrics for both the
Rematching and Scalable variants, including computational time
and registration accuracy.
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Figure 3: Visualization of runtime expressed in seconds for each
principal step composing the pipelines of the five compared meth-
ods.

Figure 4: Visualization of the deformation represented by the first
three principal components. Blue areas indicate expansion, while
red areas signify compression.

From the results presented in Table 2, we can notice that both
methods achieve comparable levels of accuracy in the final registra-
tion. However our method requires fewer computational resources
and consequently, resulting in a significantly reduced runtime to
achieve the same outcome. This is coherent with our expectations,
indeed it makes just one KNN computation, with a smaller number
of parameters. In particular, this efficiency is consistent in both the
approaches, Scalable and in Rematching. The total runtime of the
pipeline for the Rematching technique is about 52 minutes with our
approach, compared to 98 minutes using the standard method. The
Scalable technique are required 60 minutes for our approach and
107 minutes for the standard method. Overall, applying our meth-
ods improves runtime efficency by about 45%.

Moreover, it is important to note that the computational time of
our method scales linearly with the number of nodes and edges
of the graph. Therefore, for future work, it would be beneficial to
fine-tune these parameters in order to further speed up the whole
pipeline.

6. Applications

6.1. Analysis of the variation

Using the median shape M̄ as template, we generated for each
shape Mi a vertex-wise deformation field d(i) deforming M̄ into
Mi. Exploiting the dissimilarity field, calculated as explained in
section 4, we projected it into the truncated Laplacian basis of di-
mention K. Using this deformation field as descriptor for a shape,
we perform PCA to extract the principal components Dppca

i that de-
scribe the deformations. These can be interpreted as the deforma-
tions of the median shape, in the three dimensional space, and in
Figure 4, we can visualize the first three components over M̄.

As we can see from the Figure 4, the first principal component
highlights the lower region of the brain as the area with the great-
est variability, meaning more deformation, among the data. This
result is reflective of the dataset’s nature utilized and the data ac-
quisition process and shape reconstruction method. Indeed, during
medical imaging process, it’s not uncommon for parts of the or-
gan to be incompletely captured, and "lacking" portions are mainly
due to machine settings (e.g. field of view). The second principal
component is more significant, as it captures the brain’s expansion
along a circular band around the transverse axis. Simultaneously, it
also accounts for a symmetric compression on both temporal lobes.

© 2024 The Authors.
Proceedings published by Eurographics - The European Association for Computer Graphics.



F. Maccarone, G. Longari, G. Viganò, D. Peruzzo, F. Maggioli and S. Melzi / S4A: Scalable Spectral Statistical Shape Analysis 9 of 11

Similarly, the third principal component describes a positive brain
deformation along the band around the sagittal axis and a negative
one on the frontal lobe and the occipital lobe.

Figure 5: Cumulative variance explained by each principal com-
ponent at high resolution.

Moreover, as shown in Figure 5, by considering the first ten prin-
cipal components, we are able to explain almost the 86% of the de-
formations of the data at high resolution an about the 80% at low.
This type of analysis may be used to perform relevant medical sta-
tistical analysis over a large dataset for clinical diagnosis along with
a clear representation of the classification outcomes, such as the
recognition and quantification of deformation over the brain shape
due to a pathology.

6.2. Information Transfer

As stated in section 4, our pipeline can be used to register a collec-
tion of shapes to a template surface. This solution can be leveraged
to transfer information between meshes, which is one of the key ap-
plications of maps between shapes. We proceeded in two different
ways: 1) registering the template to the shapes pairwise; 2) register-
ing the template to the mean shape found during shape collection
registration. While using the template as the mean shapes can be
more efficient, depending on the application, it can be more useful
to identify a new more informative template within the collection.

Figure 6 and 7 refer to the transfer of information and segmenta-
tion, and the transfer of landmarks, respectively. The source shape
(on the left) is a template representing a population-averaged brain
model. To apply our method to a real case of possible medical inter-
est, the considered template is a high-resolution shape, with more
than 30k vertices, and comes with a fine-grained pre-segmentation
providing a comprehensive map of the brain’s anatomical structure,
with 40 labels for each hemisphere. The template key-points have
been located manually on the shape following expert’s guidelines
and clinical needs, as transferring this type of information has use-
ful applications in obtaining meaningful metrics.

Figure 6: Segmentation transfer from the template (left) to the tar-
get shape (right).

Figure 7: Key-points transfer from the template (left) to the target
shape (right).

7. Conclusions and Future Works

In this paper, we introduced S4A, an efficient method for statistical
shape analysis based on spectral geometry processing, addressing
the challenges of dense mesh representations in medical data. S4A
establishes correspondences between shape pairs, defines a com-
mon latent space, and computes statistical quantities, capturing rep-
resentative variations while maintaining computational efficiency.
Our results demonstrate that S4A outperforms existing methods in
accuracy and processing time, proving its value in analyzing com-
plex shape collections. But, despite its potentiality, it is important
to note that our approach is limited to applications on meshes due
to the underlying requirements of the rematching algorithm, which
necessitates a mesh structure. This restricts our analysis to mesh-
based structures and does not allow for other types of 3D represen-
tations, such as point clouds and implicit surfaces

Up to now, S4A has been tested on a specific and quite small
shape collection from the medical world, which limits the evalua-
tion of the robustness of our method. Looking ahead, we plan to en-
hance S4A’s scalability and robustness for larger datasets, and test
its accuracy on benchmarks like the SHREC19 dataset [MMR∗19]
and to an extension of the considered brain dataset. While this
method has primarily been applied to genus-0 shapes, we antici-
pate it can be extended to shapes with varying topologies, as with
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the functional maps pipeline. We believe this approach should be
adaptable to models of different genera, though additional exper-
iments would be required to confirm its effectiveness. Addition-
ally, S4A can be a foundation for studies and analyses on high-
resolution shape collection. Thanks to its ability to transfer infor-
mation, this pipeline can be exploited to transfer segmentation la-
bels and landmarks onto unlabeled data, addressing both the lack
of labeled data and the challenges involved in obtaining them. In
accordance with that, a key future development is that of exploiting
S4A for building a large dataset to train machine learning models
on medical data for automatic segmentation or keypoint detection
using feature extractors such as PointNet [QSMG16] or Diffusion-
Net [SACO22]. Overall, S4A has significant potential to advance
research in medical and other scientific fields requiring detailed
shape analysis.

By combining advanced spectral techniques with a carefully de-
signed analysis pipeline, S4A represents a significant advancement
in the field of statistical shape analysis, particularly for applica-
tions involving dense and complex medical data. Our work opens
new possibilities for efficient and detailed analysis of shape defor-
mations, with potential applications in medical research, diagnosis,
and treatment planning.
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