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Figure 1: A visual representation of our processing pipeline. Given a dataset for shape matching applications like TOSCA (on the left), we
first apply a non connectivity-preserving remeshing for altering the meshes connectivities, making them different even among shapes of the
same class. Then, by exploiting the 3D alignment between the original shape and its remesh, as well as the ground truth correspondence
provided by TOSCA, we build a new ground truth correspondence between the remeshed surfaces. As a result, we obtain our new dataset
TACO (on the right).

Abstract
In real-world scenarios, a major limitation for shape-matching datasets is represented by having all the meshes of the same
subject share their connectivity across different poses. Specifically, similar connectivities could provide a significant bias for
shape matching algorithms, simplifying the matching process and potentially leading to correspondences based on the recurring
triangle patterns rather than geometric correspondences between mesh parts. As a consequence, the resulting correspondence
may be meaningless, and the evaluation of the algorithm may be misled. To overcome this limitation, we introduce TACO, a new
dataset where meshes representing the same subject in different poses do not share the same connectivity, and we compute new
ground truth correspondences between shapes. We extensively evaluate our dataset to ensure that ground truth isometries are
properly preserved. We also use our dataset for validating state-of-the-art shape-matching algorithms, verifying a degradation
in performance when the connectivity gets altered.

CCS Concepts
• Computing methodologies → Shape analysis; • Theory of computation → Computational geometry;
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1. Introduction

Shape matching is a major research topic in the field of computer
graphics. Given two meshes, the goal of a shape matching task is
to identify a correspondence between geometric elements (i.e., ver-
tices, edges, faces) of the first mesh onto the second. The problem
of finding such correspondence is, in its general setting, known
to be NP-hard [BLG*21]. Current approaches for solving shape
matching tasks are mainly evolving in two directions: either using
geometric deep learning techniques and data-driven approaches to
learn features for correspondence estimation [VM24; MRMO20],
or relying on the functional maps framework to infer the point-
wise correspondence from a linear map among functional spaces
over the surfaces [OBS*12; MRR*19; MMO*21; MBRM24]. In
both these scenarios, shape matching algorithms make massive use
of descriptors, a class of scalar functions over the surface with the
property of identifying certain features, localizing in certain areas,
or providing an almost unique signature of each vertex. While being
very useful and effective, shape descriptors are generally derived
from discrete differential operators, and consequently they strongly
depend on the mesh resolution and connectivity [SOG09; ASC11].
It follows that the performance of the algorithms is influenced by
the connectivity and the quality of the shape.

The major downside in this regard is that shape matching tech-
niques can be biased by similar connectivities, recognizing recur-
ring triangle patterns instead of semantically and geometrically
meaningful corresponding features. As a consequence, evaluating
a method on datasets where shapes of the same class share their
connectivity could produce misleading results. To overcome this
limitation, we provide a processing pipeline to alter the connec-
tivities of a shape matching dataset and build new robust ground
truth correspondences, resulting in a dataset where the connectivity
varies across different meshes of the same subject. With this pro-
cess, we aim to increase the challenge provided by existing datasets
for shape matching, reducing the bias introduced by shared con-
nectivities and making the evaluation process for matching algo-
rithms more robust. We apply our procedure to the well-known
TOSCA dataset [BBK08], a longstanding benchmark for shape
matching techniques, obtaining the new dataset TACO (TOSCA
Altered COnnectivities). In TACO, shapes representing the same
subject in different poses are discretized with significantly different
connectivities, and the dataset comes with ground truth correspon-
dences between each pair of shapes belonging to the same class. We
evaluate the quality of these correspondences by comparing them
with the original ground truth from TOSCA, and we verify the in-
crease in challenge by testing state-of-the-art solutions against both
TOSCA and TACO.

In summary, the contribution of this paper is twofold:

• we introduce a novel pipeline to alter existing shape matching
dataset and increase the challenge of finding a correspondence
by varying the connectivity between shapes, while at the same
time preserving the overall geometry of the surface and a robust
ground truth correspondence between shape pairs;

• we apply our procedure to the well-established TOSCA dataset,
producing the new and more challenging dataset TACO, which
we use for evaluating state-of-the-art methods and verify their
robustness to varying connectivities.

2. Related work

Due to the relevance of the shape matching task, researchers have
designed and developed several datasets for evaluating matching
algorithms, each presenting its own features and limitations.

By starting with real scans of various humans, Anguelov et
al. [ASK*05] developed a data-driven approach for deforming a
template shape into the scans, producing SCAPE, a dataset of syn-
thetic human shapes in a one-to-one correspondence. While offer-
ing a certain variety, the dataset only contains human shapes with
the same connectivity and at low resolution.

Similarly, Bogo et al. [BRLB14] produced the FAUST dataset by
scanning 10 different subjects in 30 different poses, totalling 300
high-resolution, triangulated, non-watertight, and non-manifold
meshes. These meshes are subdivided into a training set, com-
posed of 100 meshes with ground truth available and compris-
ing a set of registrations aligned to a template shape, and a test
set, composed of 200 shapes. The FAUST dataset addresses some
of the limitations of SCAPE by increasing the resolution of the
meshes and the variety of the dataset. Nonetheless, the dataset is
still focused on human shapes only, and the low-resolution regis-
tration template shares the same connectivity across all the training
shapes. Later, the dataset has been expanded with DFAUST (Dy-
namic FAUST) [BRPB17], which provides dynamic sequences of
human body scans captured at 60 fps.

By defining a collection of shapes from other known dataset and
registering them to a common template, Melzi et al. [MMR*19]
produced the SHREC19 dataset for shape correspondences. The
dataset contains human shapes at very different resolutions, includ-
ing both synthetic clean shapes and noisy scans presenting arti-
facts, holes and clutters. While being a well-established benchmark
for shape matching tasks, the SHREC19 dataset is still completely
composed of human shapes and more focused on non-isometric
deformations (i.e., correspondences between different subjects).
Later, Dyke et al. [DZL*20] designed the SHREC20 dataset, count-
ing a richer set of subjects in correspondence. Nonetheless, the
SHREC20 dataset only provides sparse correspondences and is ori-
ented towards strongly non-isometric matching tasks.

More recently, Li et al. [LTT*21] released the Deforming Things
4D (DT4D) dataset. DT4D contains synthetic data for 1972 ani-
mation sequences spanning across 31 humanoids and animal sub-
jects. The DT4D dataset is very rich and varied, but it only con-
tains meshes at low resolution. Furthermore, correspondences are
provided only for meshes in the same animation sequence, without
connectivity variations.

Finally, the TOSCA dataset [BBK08] is a well-established
dataset for isometric shape matching, and one of the most widely
used for evaluating matching algorithms. It contains a collection of
9 synthetic human and animal subjects at various resolutions, each
represented in different poses. All the poses of the same subject
are in one-to-one isometric correspondence, but sharing the same
connectivity. The goal of our work is to address this main limita-
tion of the TOSCA dataset, providing a new dataset for isometric
shape matching between meshes with different connectivity, effec-
tively increasing the challenge posed by the dataset and evaluating
the robustness of matching algorithms to variations of connectivity.
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Figure 2: Pipeline of the remeshing procedure. Starting from the
original TOSCA mesh (left), we apply a LS3L subdivision (top),
followed by a simplification through QECD (middle). As a result,
we obtain a mesh representing the same geometry as the original
one, but with a different connectivity (bottom).

3. Proposed Method

Our pipeline, summarized in Figure 1, is divided into two parts.
Firstly, we use a sequence of MeshLab [CCC*08] filters to obtain
a remeshing of all the meshes of TOSCA, changing their connec-
tivity and creating a new collection of shapes. Then, by exploiting
the 3D alignment between the meshes of TOSCA and our collec-
tion, we obtain a point-wise correspondence between the original
surfaces and the remeshed shapes. By combining these correspon-
dences with the ground truths in TOSCA, we are able to compute
robust point-wise correspondences between pairs in our collection
of shapes, completing our dataset TACO.

3.1. Remeshing

Our remeshing pipeline relies on the MeshLab implementation
of two well-known algorithms: LS3 Loop (LS3L) [BGS10] and
Quadric Edge Collapse Decimation (QECD) [GH97]. By apply-
ing these filters in sequence, we first obtain an high-resolution
smoothed version of the shape with LS3L, and then we simplify the

geometry with QECD obtaining a mesh with a similar vertex count
to the original. Both the algorithms are designed to preserve the
original surface as much as possible, hence resulting in an almost
perfect 3D alignment between the source shape and its remesh. At
the same time, the result of both LS3L and QECD do not only
depend on the intrinsic geometry, but also on the 3D embedding,
which guarantees a change in connectivity among different poses
of the same subject. Figure 2 shows the effect of applying the two
algorithms individually and in sequence.

By conducting extensive tests on different configurations of pa-
rameters, we find that by using 3 iterations of LS3L and fixing the
face quality [FB99] threshold for QECD to 0.3 we achieve a signif-
icant variation of connectivity. We evaluate the connectivity vari-
ation by comparing the number of vertices and triangles among
shapes of the same class, as a different number of geometric ele-
ments is more likely to correspond to a change in connectivity. The
evaluation is also verified through a visual inspection.

3.2. Matching

For completing our shape matching dataset, we exploit the 3D
alignment between the original TOSCA meshes and our remeshed
shapes, as well as the original one-to-one TOSCA ground truth,
to retrieve a ground truth correspondence between the meshes in
our dataset. This process is carried out in two steps, which involve
finding first the correspondences between the meshes from TOSCA
and TACO, and then extending these correspondences to pairs of
meshes in our dataset.

3.2.1. Mesh-Remesh Correspondence

In this phase, given a mesh M = (V,E,T ) from TOSCA and its
remesh M̂ = (V̂ , Ê, T̂ ), we calculate the vertex-vertex correspon-
dence πM̂M : V̂ → V between them. To accomplish this task, we
exploit the fact that our remeshing procedure does not alter the 3D
embedding of the original mesh, and thus M and M̂ are aligned in
the 3D space. We perform a nearest neighbor search between the
vertices of M and M̂, and for sake of efficiency we use the FLANN
algorithm [ML09]. In a similar fashion, we also compute the in-
verse correspondence πMM̂ : V → V̂ .

3.2.2. Remesh-Remesh Correspondence

The objective of the second step is to calculate the correspondences
between two meshes from TACO belonging to the same class, for
which we will take advantage of the existing ground truth corre-
spondences provided by TOSCA. Let M = (VM ,EM ,TM) and N =
(VN ,EN ,TN) be two meshes from TOSCA, both belonging to the
same class, and let M̂ =(V̂M , ÊM , T̂M) and N̂ =(V̂N , ÊN , T̂N) be their
remeshed counterparts in TACO, respectively. Since the TOSCA
dataset provides the one-to-one ground truth correspondence πMN :
VM → VN (with inverse πNM = π

−1
MN ), we can compute the ground

truth correspondences between M̂ and N̂ in both directions by func-
tion composition. Namely, we have πM̂N̂ = πNN̂ ◦πMN ◦πM̂M and
πN̂M̂ = πMM̂ ◦πNM ◦πN̂N . This composition of functions for retriev-
ing ground truth correspondences in TACO is depicted in Figure 1.

© 2024 The Authors.
Proceedings published by Eurographics - The European Association for Computer Graphics.



4 of 7 S. Pedico et al. / TACO: a benchmark for connectivity-invariance in shape correspondence

4. Results

To evaluate our dataset, we compare the results of state-of-the-art
shape matching algorithms on both TOSCA and TACO, and we
verify the decrease in performance. In order to ensure a meaningful
comparison, we also evaluate the similarity between the original
mesh and the remeshed shapes, both intrinsically and extrinsically.
Furthermore, we ensure that the ground truth correspondences that
we provide have comparable quality with the ground truth corre-
spondences in TOSCA.

4.1. Quality of meshes

For each original mesh M and its remesh M̂, we evaluate the quality
of the remeshing process through a wide set of measurements. We
notice that both the original surfaces and our remeshed shapes are
all 2-manifold, made of a single connected component, and have
the same number of boundary components. The gorilla mesh
constitutes the only exception: in the original TOSCA dataset it
presents non-manifold vertices and various disconnected compo-
nents, but after our remeshing process it becomes 2-manifold and
most of the smallest disconnected components are removed.

Our first step is to verify that the remeshed shape M̂ = (V̂ , Ê, T̂ )
represents the same surface as the original mesh M = (V,E,T ).
For this task, we employ both the Hausdorff distance dH and the
Chamfer distance dC for triangular meshes. They are defined as

dH(M,M̂) = max
(

max
v̂∈V̂

min
t∈T

d(v̂, t), max
v∈V

min
t̂∈T̂

d(v, t̂)
)
, (1)

dC(M,M̂) =
1
|V̂ | ∑

v̂∈V̂

min
t∈T

d2(v̂, t)+
1
|V | ∑

v∈V
min
t̂∈T̂

d2(v, t̂) , (2)

where d(v, t) is the usual point-triangle distance. Before comput-
ing the distances, we translate all the shapes so that their center
of mass is the origin of the axes, and we scale them inside the
cube [−1,1]3. The preprocessing step ensures that all the shapes
are scaled uniformly and the comparison is meaningful. Figure 3
shows the results of our measurement. We group the values be-
tween the different classes that constitute the dataset and compute
the average. For all the classes, we register very small distances,
ensuring that the remeshed shapes are effectively a close approx-
imation of the original surface. Due to the large amount of small
disconnected components in the original mesh, the gorilla class
registers a larger distance. In the case of the wolf class, instead, we
notice that the low resolution negatively affects the computation of
the Chamfer distance. Indeed, a smaller vertex count prevents some
vertices to be placed close to the original surface, and a larger er-
ror on these outliers cannot be compensated by averaging across the
small number of vertices. Nonetheless, for both classes the distance
is small enough to be considered negligible, as shown in the exam-
ple from Figure 4. Here we apply a procedural pattern to two shapes
from the gorilla and wolf class. The pattern is very sensitive
to coordinate variation [MBMR22], demonstrating the similarity
between the original meshes and the remeshed shapes, despite the
larger Hausdorff and Chamfer distances.

As an additional measure for the similarity between the original
mesh M and its remesh M̂, we also evaluate their spectral similar-
ity. The classical result from Reuter et al. [RWP06] showed that the
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Figure 3: Chamfer distance and Hausdorff distance between the
original meshes from TOSCA and the remeshed shapes from TACO.
The distances are grouped by class and averaged. The Chamfer
distance is shown in logarithmic scale.

Figure 4: Application of a very coordinate-sensitive procedural
pattern to the gorilla and wolf meshes from TACO (left) and
TOSCA (right).

Laplacian spectrum is a good measure of similarity between iso-
metric shapes, and thus, if two meshes represents the same surface,
we expect their Laplacian eigenvalues to be very similar. However,
instead of directly aligning the spectra, we adopt the technique in-
troduced by Moschella et al. [MMC*22], which uses the vector of
the first 100 spectral offsets off(λi) = λi −λi−1 to compensate for
the Weyl’s law [Wey11]. The results, grouped by class and aver-
aged, are shown in Figure 5. We notice that centaur and wolf
register a larger error. This is expected, since they are the shapes
with lowest resolution in the dataset, and hence moving around
their vertices has a larger impact on the spectrum.

© 2024 The Authors.
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Figure 5: Average relative difference between the first 100 spectral
offset of a mesh M and its remesh M̂. Results are grouped by class
and averaged.

4.2. Preserving the isometries

Preserving the underlying surface is not enough to guarantee the
quality of a shape matching dataset. With our dataset, we also pro-
vide a ground truth correspondence between the remeshed shapes.
Thus, we perform a set of experiments to validate both the quality
of the correspondence and the steps through which it is computed.

Since our ground truth correspondence is obtained via a nearest
neighbor correspondence πMM̂ between an original mesh M and
its remeshed counterpart M̂, we have to ensure that this correspon-
dence is semantically correct. To accomplish this task, we measure
the geodesic distortion induced by our correspondence. By defini-
tion, if πMM̂ is an isometry it must preserve the distances; namely

dM(x,y) = dM̂(πMM̂(x),πMM̂(y)) , (3)

where dS(p,q) represents the geodesic distance over the surface S
between points p and q.

We compute the matrix of geodesic distances among the vertices
V of M, and we do the same for the vertices V̂ of M̂. Then, we
use the correspondence πMM̂ to evaluate the geodesic distortion be-
tween pairs of vertices and compute the average. For a uniform
comparison, we normalize the difference by the shape diameter
δM = maxv1,v2∈V dM(v1,v2), obtaining

1
|V |2 ∑

v1,v2∈V
abs

(
dM(v1,v2)−dM̂(πMM̂(v1),πMM̂(v2))

δM

)
. (4)

Computing the matrices of all the geodesic distance pairs and
comparing them would be computationally unfeasible, due to the
density of the meshes. Thus, we approximate the computation with
5000 vertices selected with a geodesic farthest point sampling, to
ensure uniform coverage of the surface. The results for all the 80
shapes in the dataset are summarized in Figure 6. We see that for
most of the dataset the average geodesic distortion is under 1.5%
of the shape diameter, and for all the shapes it is always less than
2.2% of δM , proving that the correspondence we compute between
the mesh M and its remesh M̂ is very close to an isometry.

For evaluating the quality of the correspondences between two
shapes M1,M2 of the same class in different poses, we rely on the
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Figure 6: Distribution of the average geodesic distortion across the
shapes in the dataset.
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Figure 7: Distribution of the Laplacian commutativity and the map
orthogonality across all the dataset pairs for TACO (blue) and
TOSCA (orange).

metrics discussed by Lescoat et al. [LLT*20]: the Laplacian com-
mutativity ∥ · ∥L and the map orthogonality ∥ · ∥D. These metrics
are defined as

∥C∥L =
∥CΛΛΛ1 −ΛΛΛ2C∥2

∥C∥2
, (5)

∥C∥D =
∥C⊤C− Ik∥2√

k
, (6)

where ΛΛΛi is the diagonal matrix that has the Laplacian eigenvalues
of Mi on its diagonal and Ik is the k× k identity matrix.

For each of the 420 possible pairs of original shapes M1 and M2
in the same class, we compute their ground truth functional map C.
Then, given the remeshed shapes M̂1 and M̂2, we compute the func-
tional map Ĉ inferred by our computed correspondence. For both C
and Ĉ, we compute the Laplacian commutativity and map orthog-
onality. Figure 7 shows that the measures have similar distribution
and the results are comparable, meaning that the correspondence
between the remeshed shapes is about the same quality as the cor-
respondence between the original shape.
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Figure 8: Accuracy curves for all the tested methods on both
TOSCA (orange) and TACO (ours, in blue). The curves are aver-
aged across all the 420 possible pairs of shape from the same class.

Method Dataset AGE(·10−2) ↓ AUC ↑
FMaps TACO 3.01 47.06
FMaps TOSCA 2.33 47.77

ZoomOut TACO 2.50 47.58
ZoomOut TOSCA 1.85 48.22

Scalable FMaps TACO 2.24 47.85
Scalable FMaps TOSCA 1.72 48.34

ReMatching TACO 2.25 47.79
ReMatching TOSCA 2.34 47.77

Table 1: Average geodesic error (lower is better) and area under
the accuracy curve (higher is better) for each combination of tested
methods and datasets.

4.3. Shape matching challenge

To assess the impact of a varying connectivity in shape match-
ing applications, we evaluate state-of-the-art methods for com-
puting isometric correspondences to both TOSCA and TACO.
For this task, we used the well-established approaches like func-
tional maps with product preservation (FMaps) [NO17] and
ZoomOut [MRR*19], as well as more recent techniques like Scal-
able Functional Maps [MO23] and ReMatching [MBRM24].

The results of our experiments are summarized in Figure 8,
where we show the accuracy curves of each method tested on
both TOSCA and TACO. We also provide the area under the ac-

curacy curve (AUC) and the average geoedesic error (AGE) in Ta-
ble 1. The results show that using our dataset reduces the quality of
the correspondence, increasing the AGE by 29% (FMaps) to 35%
(ZoomOut). Notably, ReMatching achieves better results on TACO
than on TOSCA. We guess this being due to the remeshing step
applied by the algorithm prior to the functional map computation,
which effectively invalidates the effects of changing the original
connectivity.

5. Limitations and future directions

While altering the connectivity between the source and target shape
results in a more challenging shape matching task, some methods
are already overcoming this additional difficulty. On top of that,
our dataset specifically targets correspondence tasks on 3D trian-
gular meshes, and does not take into account other representations.
To overcome these limitations, we plan to extend our dataset with
several additional challenges:

• adding shapes with a larger variation in vertex count can substan-
tially hinder the accuracy of many methods, as it would forbid a
bijectivity (even approximate) in the correspondence;

• by introducing noisy and partial shapes, as well as strong de-
formations, we would be able to target other applications like
non-isometric and partial shape matching;

• finding a correspondence between 3D shapes is not limited to
triangular mesh, and thus we plan to extend our dataset by in-
cluding other types of data and representations, such as point
clouds and implicit surfaces.

With these future developments in mind, we believe that TACO
has the potential for becoming a unified benchmark for 3D match-
ing algorithms.

6. Conclusions

We introduced the new TACO dataset for shape matching applica-
tions. Our dataset is built on top of the well-known TOSCA dataset,
and it is obtained through a non-connectivity preserving remeshing
of the original shapes. By exploiting the 3D alignment of the orig-
inal and remeshed surfaces, as well as the original ground truth
correspondence in TOSCA, we also produced a new ground truth
for TACO. Through a set of experiments, we validated the quality
of the correspondences, and proved that they are comparable with
the original ground truth in TOSCA.

By evaluating state-of-the-art shape matching algorithms on both
TOSCA and TACO, we proved that finding a correspondence be-
tween meshes with different connectivities is a more challenging
task, and thus that our dataset can find an application in making
shape matching algorithm more robust.
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