Orthogonalized Fourier Polynomials for Signal Approximation and Transfer (Supplementary Materials)

F. Maggioli ¹, S. Melzi ¹, M. Ovsjanikov ², M. Bronstein ^{3,4,5} and E. Rodola ¹

¹Sapienza University of Rome, Italy ²LIX, Ecole Polytechnique, IP Paris, France ³Imperial College London, United Kingdom ⁴Twitter, United Kingdom ⁵USI Lugano, Switzerland

In this document, we report the full derivation for the iterative computation of the transfer matrix **O** which, due to lack of space, we did not include in the main manuscript.

1. An iterative formula for the transform O

We consider $\Pi: \mathcal{N} \to \mathcal{M}$ the point-to-point correspondence between two shapes \mathcal{N} and \mathcal{M} . $T_F: L^2(\mathcal{M}) \to L^2(\mathcal{N})$ is the functional map associated to this correspondence defined via pull-back $T_F(f) = f \circ \pi, \ \forall f \in L^2(\mathcal{M})$. \mathbf{C} is the matrix representation of T_F in a truncated pair of bases $\mathbf{\Phi}$ and $\mathbf{\Psi}$ for $L^2(\mathcal{M})$ and $L^2(\mathcal{N})$ respectively. For simplicity we consider both the finite bases with the same dimension K and the general case directly arise from our analysis. $\tilde{\mathbf{\Phi}}$ and $\tilde{\mathbf{\Psi}}$ are the matrices the columns of which are the eigenproducts of order N of the basis functions contained in $\mathbf{\Phi}$ and $\mathbf{\Psi}$. We represent each of these eigenproducts as $\tilde{\mathbf{\phi}}_h$ and $\tilde{\mathbf{\psi}}_\ell$ $\tilde{\mathbf{C}}$ is the functional maps extended to the eigenproducts following the formula proposed in [NMR*18].

As we describe in the main document, our bases are obtained by applying the Gram-Schmidt algorithm to $\tilde{\Phi}$ and $\tilde{\Psi}$ obtaining the two couples $\tilde{\Phi} = \mathbf{Q}^{\Phi} \mathbf{R}^{\Phi}$ and $\tilde{\Psi} = \mathbf{Q}^{\Psi} \mathbf{R}^{\Psi}$. we are therefore interested in estimating a transform \mathcal{O} such that $T_F(\mathbf{Q}^{\Phi}) = \mathbf{Q}^{\Psi} \mathcal{O}$.

First of all due to the role of \mathbf{C} we can write $\mathbf{\Psi}\mathbf{C} = T_F(\mathbf{\Phi})$ and $\tilde{\mathbf{\Psi}}\tilde{\mathbf{C}} = T_F(\tilde{\mathbf{\Phi}})$. These equality could be only approximation depending on the quality of the maps \mathbf{C} and $\tilde{\mathbf{C}}$, and in the alignment of the bases involved. For this reason we can already set the first K columns of $\mathbf{O} = \begin{bmatrix} \mathbf{C} \\ \mathbf{0} \end{bmatrix}$, where $\mathbf{0}$ is a matrix of zeros with K columns

and the number of rows equal to the number of functions in \mathbf{Q}^{Ψ} minus K. This allows us to consider the first K columns of \mathbf{O} already computed and only estimated the remaining ones. For this reason we look for an iterative construction of \mathbf{O} that estimate at each iteration a new column of \mathbf{O} from left to right. This procedure is related with the iterative construction of the bases \mathbf{O}^{Φ} and \mathbf{O}^{Ψ} .

Let us start writing the explicit formula for the column ζ_i of \mathbf{Q}^{Φ} :

$$\zeta_i = \frac{1}{\mathbf{R}_{i,i}^{\Phi}} (\tilde{\varphi}_i - \sum_{h=1}^{i-1} \mathbf{R}_{i,h}^{\Phi} \zeta_h), \tag{1}$$

and in the same way:

$$\xi_{j} = \frac{1}{\mathbf{R}_{j,j}^{\Psi}} (\tilde{\mathbf{\Psi}}_{j} - \sum_{\ell=1}^{j-1} \mathbf{R}_{i,\ell}^{\Psi} \xi_{\ell}). \tag{2}$$

Now we want to compute the image via T_F of each function ζ_i (column) of \mathbf{Q}^{Φ} , for i > K, thanks to the linearity of T_F we have:

$$T_F(\zeta_i) = T_F\left(\frac{1}{\mathbf{R}_{i,i}^{\Phi}}(\tilde{\varphi}_i - \sum_{h=1}^{i-1} \mathbf{R}_{i,h}^{\Phi}\zeta_h)\right) =$$
(3)

$$\frac{1}{\mathbf{R}_{i,i}^{\Phi}} (T_F(\tilde{\mathbf{\varphi}}_i) - \sum_{h=1}^{i-1} \mathbf{R}_{i,h}^{\Phi} T_F(\zeta_h)). \tag{4}$$

Now we can consider that:

$$T_F(\tilde{\mathbf{\varphi}}_i) = \tilde{\mathbf{\Psi}}\tilde{\mathbf{C}}_{:.i} \tag{5}$$

$$T_F(\zeta_h) = \sum_j \mathbf{O}_{j,h} \xi_j, \tag{6}$$

where j goes from 1 to the number of functions in \mathbf{Q}^{Ψ} while $\tilde{\mathbf{C}}_{:,i}$ is the i-th column of $\tilde{\mathbf{C}}$. Equation 6 can be written only because we already know all the elements of \mathbf{O} , $\forall j$ and $\forall h \leq i-1$. Then we can substitute the equivalences 5 and 6 in 4:

$$T_F(\zeta_i) = \frac{1}{\mathbf{R}_{i,i}^{\Phi}} \Big(\tilde{\mathbf{\Psi}} \tilde{\mathbf{C}}_{:,i} - \sum_{h=1}^{i-1} \mathbf{R}_{i,h}^{\Phi} (\sum_j \mathbf{O}_{j,h} \xi_j) \Big). \tag{7}$$

Now we know that $\tilde{\Psi} = Q^{\Psi}R^{\Psi}$ so we can write:

$$T_F(\zeta_i) = \frac{1}{\mathbf{R}_{i,i}^{\Phi}} \left(\mathbf{Q}^{\Psi} \mathbf{R}^{\Psi} \tilde{\mathbf{C}}_{:,i} - \sum_{h=1}^{i-1} \mathbf{R}_{i,h}^{\Phi} (\sum_j \mathbf{O}_{j,h} \xi_j) \right) =$$
(8)

$$\frac{1}{\mathbf{R}_{i,i}^{\Phi}} \left(\sum_{j} \sum_{l=1} \mathbf{R}_{j,l}^{\Psi} \tilde{\mathbf{C}}_{l,i} \xi_j - \sum_{h=1}^{i-1} \mathbf{R}_{i,h}^{\Phi} (\sum_{j} \mathbf{O}_{j,h} \xi_j) \right), \quad (9)$$

where the last equation comes from the definition of the matrix product. Now we can collect and reorder the element in the last equation with respect to the sum over j:

$$T_F(\zeta_i) = \frac{1}{\mathbf{R}_{i,i}^{\Phi}} \left(\sum_{j} \underbrace{\left(\sum_{l=1}^{i} \mathbf{R}_{j,l}^{\Psi} \tilde{\mathbf{C}}_{l,i} - \sum_{h=1}^{i-1} \mathbf{R}_{i,h}^{\Phi} \mathbf{O}_{j,h} \right)}_{\mathbf{O}_{j,i}} \xi_j \right), \tag{10}$$

where $\mathbf{O}_{j,i}$ only depends on \mathbf{R}^{Φ} , $\tilde{\mathbf{C}}$, \mathbf{R}^{Ψ} and form the first i-1 columns of \mathbf{O} . This result proves that \mathbf{O} can be iteratively computed on its columns as a function of known variables. Moreover, being $\tilde{\mathbf{C}}$ a function of \mathbf{C} , this result clarify once again that it is possible to fully recover \mathbf{O} from \mathbf{C} justifying the proposed procedure.

References

[NMR*18] NOGNENG D., MELZI S., RODOLÀ E., CASTELLANI U., BRONSTEIN M., OVSJANIKOV M.: Improved functional mappings via product preservation. *Computer Graphics Forum 37*, 2 (2018), 179–190.