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ABSTRACT

The multiplication of a matrix by its transpose, A𝑇 A, appears as an
intermediate operation in the solution of a wide set of problems.
In this paper, we propose a new cache-oblivious algorithm (AtA)
for computing this product, based upon the classical Strassen algo-
rithm as a sub-routine. In particular, we decrease the computational
cost to 2/3 the time required by Strassen’s algorithm, amounting to
14
3 𝑛

log2 7 floating point operations. AtA works for generic rectan-
gular matrices, and exploits the peculiar symmetry of the resulting
product matrix for saving memory. In addition, we provide an ex-
tensive implementation study of AtA in a shared memory system,
and extend its applicability to a distributed environment. To sup-
port our findings, we compare our algorithm with state-of-the-art
solutions specialized in the computation of A𝑇 A. Our experiments
highlight good scalability with respect to both the matrix size and
the number of involved processes, as well as favorable performance
for both the parallel paradigms and the sequential implementation,
when compared with other methods in the literature.
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1 INTRODUCTION

Matrix multiplication is a fundamental operation in Linear Alge-
bra and HPC, as it appears as an intermediate step in a wide set
of problems. Many researchers have devoted their efforts to the
algorithmic aspects of matrix multiplication, with the aim of im-
proving the computational cost of existing algorithms and to devise
and implement new solutions for parallel architectures. Designing
a distributed algorithm for matrix multiplication is a challenging
task, due to the inherent dependence of the data scattered in the
system’s distributed memory, and due to the overhead due to the
communication cost of assembling the resulting product matrix.

The product of a matrix by its transpose, A𝑇 A (as well as AA𝑇 ),
is a particular matrix multiplication involved in several applications.
For example, computing AA𝑇 is a straightforward, yet effective,
method to check for orthogonality or to project vectors onto the
∗Both authors contributed equally to this research.

space spanned by the columns of A. This product, in fact, is re-
peatedly computed in the Gram-Schmidt algorithm for vector basis
orthogonalization, where A is the progressively built projection
matrix. One way to solve the least squares problem of under and
over determined linear systems A𝒙 = 𝒃 , is to solve the associated
system of normal equations, obtained by left-hand multiplying
the original system by A𝑇 , thus obtaining a square linear system
A𝑇 A𝒙 = A𝑇 𝒃 . Also, the Singular Value Decomposition (SVD) of a
matrix A can be computed by studying the eigenproblem for A𝑇 A
and AA𝑇 . Furthermore, the product of a matrix by its transpose
commonly arises in discrete exterior calculus and discrete differ-
ential geometry. One example is given by the discrete heat kernel
K(𝑡) = ΦE(𝑡)Φ𝑇 , with E(𝑡) = exp(−Λ𝑡) being a diagonal matrix, so
that K(𝑡) = (ΦE(𝑡)1/2) (ΦE(𝑡)1/2)𝑇 can be efficiently computed [38].
Many other applications of the product A𝑇 A are described in [32],
together with its properties such as positive semi-definiteness.

In this work, we consider the multiplication between A𝑇 and A,
where A may have any size and shape. We rely on a recursive ap-
proach that, as described in [28], is virtually tuning free and avoids
the significant tuning efforts that are required by iterative blocked
algorithms to achieve near-optimal performance. Our contribution
is threefold.

• First, we introduce AtA (Section 3), a cache-oblivious algorithm
for computing A𝑇 A that requires 2/3𝑛 (log2 7) + 1/3𝑛2 multiplica-
tions. We exploit the self-similarity of the A𝑇 A product with its
sub-problems and the Strassen’s algorithm, that is recursively
applied to possibly rectangular matrices, without introducing
additional computational and space cost, deriving from dynamic
peeling and padding, as in [22, 34]. In contrast to [13], our algo-
rithm works on any algebraic field. We prove that AtA exhibits
high efficiency for both memory and time, and show that it is ef-
ficiently implementable, as it does not hide large constant factors.
We also describe our implementation of Strassen’s algorithm, and
compare its performance with that of the Intel MKL BLAS gemm
routine for matrix multiplication.
• Second, we describe AtA-S, our multi-threaded implementation
of AtA for a shared memory system, relying on OpenMP (Sec-
tion 4.2). A well-engineered scheduler that assigns different tasks
to each thread in such a way that computations can be carried out
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in perfect parallelism by preventing memory collisions. Perfor-
mance evaluation shows that our implementation outperforms
the multi-threaded Intel MKL BLAS routines (e.g. syrk for sym-
metric rank-𝐾 update) on large matrices, even on Intel processors.
• Finally, we extend our approach to distributed systems, leverag-
ing the standard message-passing paradigm MPI. Our distributed
algorithm AtA-D allows the distribution of the computational
effort among a larger number of processes (Section 4.3). This is
particularly convenient on very large matrices.

To validate the effectiveness of our algorithms, we study their
performance by running a set of tests on dense matrices of variable
size (Section 5). We analyse different metrics for evaluating the
scalability of our parallel implementation, and compare our results
with benchmark solutions for distributed systems. We run tests on
a cluster of multi-core nodes endowed with 2 × 8 core Intel Xeon
E5-2630v3 processors, 2.4 Ghz, 4 GB RAM/core.

2 RELATEDWORK

Nowadays, matrix multiplication is still a hot topic in HPC and nu-
merical algorithmics. In 1969, Strassen [33] was the first to reduce
the computational complexity of the standard matrix multiplication
from 𝑂 (𝑛3) to 𝑂 (𝑛log2 7). More recently, Coppersmith and Wino-
grad [9] devised an algorithm for matrix multiplication running
in ∼ 𝑂 (𝑛2.38) time. In the last decade, many have devoted their
efforts to improve this limit ([18, 31, 36]). These works make use of
algebraic tensors that, despite the elegance of the resulting method,
are still hardly used in practice as they come at the cost of very
large hidden constants and frequent memory access.

Several authors have designed hybrid algorithms, deploying
Strassen’s multiplication in conjunction with conventional matrix
multiplication, to overcome the overhead of Strassen’s algorithm
on small matrices, see, e.g., [4–6, 20, 22]. Huss-Lederman et al.
[22] propose two techniques, known as dynamic peeling and static
padding, in order to apply Strassen’s algorithm to odd-sized ma-
trices. Thottethodi et al. [34] propose two strategies to optimize
memory efficiency in Strassen by minimizing padding and peeling
operations. Many researchers have proposed a parallel implemen-
tation of Strassen’s algorithm. In [27], Luo and Drake explored
Strassen-based parallel algorithms that use the communication pat-
terns known for classical matrix multiplication. They considered
using a classical 2D parallel algorithm and using Strassen locally
and at the highest level. This approach is improved in [19] by using
a more efficient parallel matrix-multiplication algorithm running
on a more communication-efficient machine. In [10], Strassen’s
algorithm is extended to deal with rectangular and arbitrary-size
matrices. Their approach leverages on a suitable combination of
Strassen’s with ATLAS and GotoBLAS. Other parallel approaches
[12, 21, 30] have used more complex parallel schemes and commu-
nication patterns, and consider at most two steps of Strassen. In [1],
a parallel algorithm based on Strassen’s fast matrix multiplication,
Communication - Avoiding Parallel Strassen (CAPS), is described.
The authors show that its complexity matches the communication
lower bounds described in [2]. This work is extended in [11] to han-
dle rectangular matrices (CARMA). More recently, Kwasniewski et
al. [26] proposed a near optimal algorithm for matrix multiplication
that models the matrix multiplication dependencies by the red-blue

pebble game [23] to derive an I/O optimal schedule, improving the
performance of previous works.

Both Strassen’s algorithm and AtA fall into the class of recursive
blocked algorithms. The work in [15, 25] proves the effectiveness of
this kind of algorithms for dense Linear Algebra. The work in [14]
introduces FRPA, an interface for implementing recursive problems
in parallel that gets as an input the recursive problem, and han-
dles parallelization and auto-tuning automatically. Similarly to our
approach, Charara et al. [8] propose block recursive matrix multi-
plication and linear solver algorithms. They show how recursion
enhances data reuse and concurrency in GPUs. Differently from
the work presented in this paper, they specialize on triangular ma-
trices. In [7], the authors also adapt this blocking strategy to handle
batched operations on small matrix sizes (up to 256) to stress the
register usage and maintain data locality. In [28], Elmar and Bienti-
nesi introduce ReLAPACK, a collection of recursive algorithms for
dense Linear Algebra. While this work corroborates the recursive
approach that we implement in our algorithms, it does not pro-
vide a routine specialized in the A𝑇 A product for general matrices.
Instead, they propose a routine for the same multiplication only
on triangular matrices. We highlight that the solutions proposed
for the multiplication of a matrix by its transpose on triangular
matrices (TRSYRK) is useful for many applications but cannot be
applied on general matrices.

Although much research has been devoted to optimizing the im-
plementation of parallel matrix multiplication, very few solutions
have been proposed for the A𝑇 A multiplication. In [13], Dumas
et al. propose an algorithm for the product AA𝑇 whose computa-
tional complexity is improved by a constant factor with respect to
previously known reductions. This approach is applicable only to
matrices lying in fields where skew-orthogonal matrices exist (e.g.,
C and finite fields of prime characteristics), which is not the case
for R and Q, that instead are important in many applications, such
as the study of embedded systems, computational geometry and
system simulations.

Except for some sporadic attempts to implement a method for
distributing in a balanced way the workload for matrix multiplica-
tion among processes with the MapReduce programming model
[24, 29], the approach that we implement here for the distributed
parallel model has barely been investigated.

3 ATA

In this section, we describe our sequential recursive algorithm
for the matrix multiplication A𝑇 A, dubbed AtA, and we provide
implementation details. We remark that our solution also works for
the product AA𝑇 . Yet, when row-major order is the default layout
for array storage, the A𝑇 A multiplication is in practice harder to
perform, as memory access is inherently column-wise, hence not
cache friendly. Since AtA includes calls to Strassen for generic
matrix multiplications, we also outline a time and space efficient
implementation for this algorithm.

3.1 AtA in detail

Let A ∈ R𝑚×𝑛 be a rectangular matrix. The idea behind AtA is
the following: at each recursive step, matrix A is divided into four
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sub-matrices as follows:

A =

[
A1,1 A1,2
A2,1 A2,2

] A1,1 = A0:𝑚1,0:𝑛1 ∈ R𝑚1×𝑛1

A1,2 = A0:𝑚1,𝑛1:𝑛 ∈ R𝑚1×𝑛2

A2,1 = A𝑚1:𝑚,0:𝑛1 ∈ R𝑚2×𝑛1

A2,1 = A𝑚1:𝑚,𝑛1:𝑛 ∈ R𝑚2×𝑛2

(1)

being𝑚1 :=
⌊
𝑚
2
⌋
,𝑚2 :=

⌈
𝑚
2
⌉
, 𝑛1 :=

⌊
𝑛
2
⌋
, 𝑛2 :=

⌈
𝑛
2
⌉
. We address to

sub-matrices of a matrix A as to indexed sub-blocks (A𝑖, 𝑗 ) or with
line and column intervals (A𝑟1:𝑟2,𝑐1:𝑐2 ). The product matrixC = A𝑇 A
is also split into four sub-matrices, resulting in the following:

C1,1 = A𝑇
1,1A1,1 + A𝑇

2,1A2,1 ∈ R𝑛1×𝑛1 ,

C1,2 = A𝑇
1,1A1,2 + A𝑇

2,1A2,2 ∈ R𝑛1×𝑛2 ,

C2,1 = A𝑇
1,2A1,1 + A𝑇

2,2A2,1 ∈ R𝑛2×𝑛1 ,

C2,2 = A𝑇
1,2A1,2 + A𝑇

2,2A2,2 ∈ R𝑛2×𝑛2 .

(2)

Both C1,1 and C2,2 consist of two addends that are, in turn, the left
hand product of amatrix by its transpose. Hence, four recursive calls
are employed to compute the sub-products A𝑇

1,1A1,1 and A𝑇
2,1A2,1

to obtain C1,1, and A𝑇
1,2A1,2 and A𝑇

2,2A2,2 to obtain C2,2.
Since for any matrix A the product A𝑇 A is symmetric, at each

recursive step only the lower triangular part of the product matrix
is computed, low(C𝑖,𝑖 ), 𝑖 = 1, 2. As for component C2,1, in order to
compute its two terms in the sum, we implement the generalized
Strassen’s algorithm for non-square matrices. The sub-matrix C1,2
is equal to C𝑇

2,1, and therefore must not be explicitly computed. In
Algorithm 1 we provide the pseudo-code of AtA. The base case oc-
curs when the number of entries of the sub-matrix fits in the cache.
In that case, the multiplication is performed by the BLAS function
for A𝑇 A, ?syrk, where the character ? represents a generic data
type in accordance with standard notation used in manuals, [16]. In
Algorithm 1, we also sketch our implementation of Strassen: before
the actual recursive Strassen algorithm is called (Strassen), in Fast-
Strassen we conveniently prepare an environment for memory
efficiency by pre-allocating the memory for Strassen’s algorithm,
as explained in Section 3.3. The reduced number of multiplications
in Strassen’s algorithm is achieved by computing more matrix ad-
ditions. In our implementation of Strassen, matrix additions are
performed by calling the BLAS routine ?axpy (for the vector addi-
tion𝒚 = 𝛼𝒙 +𝒚). The base-case condition in Strassen is analogous
to the one of AtA. When the base-case condition holds, we call the
BLAS routine ?gemm for the generic A𝑇 B multiplication. To handle
odd-sized matrices, we do not implement well-known strategies
such as peeling or padding, since these are known for introducing
computational and memory overhead. Instead, we manage sums
between matrices of discordant size by conveniently applying the
BLAS routine ?axpy for array sums, so that it simulates padding of
an extra 0 column or row, by excluding the last row and/or column
of a sub-matrix from the sum.

AtA and FastStrassen are designed to be efficient alternatives
to the BLAS routines ?gemm and ?syrk. Thus, they perform the
same operations, respectively C = 𝛼A𝑇 B + 𝛽C and C = 𝛼A𝑇 A +
𝛽C. However, we avoid introducing the scaling factor 𝛽 from our
algorithms for clarity of exposure, since C can be simply scaled
before applying the algorithms.

Algorithm 1: AtA- Serial
Input: A ∈ R𝑚×𝑛,C ∈ R𝑛×𝑛, 𝛼 ∈ R
Output: Lower triangular part of C = 𝛼A𝑇 · A + C

1 Procedure AtA (A, C, 𝛼)
2 if 𝑚 × 𝑛 ≤ cache size then
3 C← C+ blas_?syrk(A, 𝛼);
4 return;
5 else

6 Initialize pointers to A𝑖, 𝑗 and C𝑖, 𝑗 , 𝑖, 𝑗 = 1, 2;
7 AtA (A1,1,C1,1, 𝛼);
8 AtA (A2,1,C1,1, 𝛼);
9 AtA (A1,2,C2,2, 𝛼);

10 AtA (A2,2,C2,2, 𝛼);
11 FastStrassen (A1,2, A1,1, C2,1, 𝛼);
12 FastStrassen (A2,2, A2,1, C2,1, 𝛼);
13

Input: A ∈ R𝑚×𝑛,B ∈ R𝑚×𝑘 ,C ∈ R𝑛×𝑘 , 𝛼 ∈ R
Output: C = 𝛼A𝑇 · B + C

14 Procedure FastStrassen(A, B, C, 𝛼)
15 Allocate M = 0𝑛×𝑘/2;
16 Allocate P = 0𝑚×𝑛/2;
17 Allocate Q = 0𝑚×𝑘/2;
18 Strassen(M, P, Q, A, B, C, 𝛼);

3.2 Computational Complexity

The idea behind Strassen’s algorithm is to perform a 2 × 2 ma-
trix multiplication using 7 multiplications instead of 8, as required
by naive matrix multiplication [33]. Nevertheless, Strassen’s algo-
rithm involves 18 sums between sub-matrices, thus leading to a
computational complexity 𝑇𝑆 (𝑛) ≈ 7𝑛log2 7.

In Algorithm 1, there are four recursive calls to AtA on basically
halved dimensions, two calls to FastStrassen and 3 sums. Thus,
we can derive the recurrence function for AtA runtime depending
on the input size 𝑛 as follows:

𝑇 (𝑛) = 4𝑇
(𝑛
2

)
+ 2𝑇𝑆

(𝑛
2

)
+ 3

(𝑛
2

)2
≈ 2

3
𝑇𝑆 (𝑛) . (3)

The overall computational complexity of AtA reduces the one of
the general matrix multiplication A𝑇 A, amounting to 𝑛2 (𝑛 + 1),
and of Strassen’s algorithm naively applied for computing A𝑇 A,
that would require the same number of products as for the general
matrix multiplication, and only 16 sums instead of the 18 matrix
additions in the original Strassen’s formulation.

3.3 Space complexity

In AtA, at each recursive step, pointers to the current portions of A
and C are initialized so that, when the condition for the base-case
occurs, the matrix multiplications are carried out on the correct
sub-matrices of A, and stored in the corresponding locations in C.

Strassen’s algorithm for general matrix multiplication is called
twice. One drawback of the naive Strassen implementation is the
great amount of memory allocated at each recursive step to store
the results of the intermediate matrix additions required by the algo-
rithm. In order to avoid frequent memory allocations and releases,
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we call recursive Strassen (Strassen) on pre-allocated matrices, M,
P and Q (FastStrassen). The size of such matrices is sufficiently
large to store all intermediate matrix operation results throughout
the recursive calls. In fact, given an 𝑛 × 𝑛 matrix, at each recursive
step we halve both the dimensions, rounding up the result to the
nearest integer when matrices have odd sizes. By doing so, the
amount of memory used by the algorithm when the base case is
reached if

log2 𝑛∑︁
𝑖=1

(𝑛 + log2 𝑛)2

4𝑖
= (𝑛 + log2 𝑛)2

(
1
3
− 4
3𝑛2

)
≤ 𝑛

2

2
(4)

which, multiplied by the three supporting matrices M, P and Q,
results in a total of 3

2𝑛
2. Although the overall space complexity of

Strassen does not change, we are able to save time for memory al-
location at each recursive step. Consequently, the space complexity
of AtA is 𝑆 (𝑛) = 3

2𝑛
2.

In Section 5, we show that Strassen’s algorithm benefits from
the described strategy for memory allocation.

3.4 Cache Complexity

In this section, we show the cache complexity of AtA. We assume
the ideal cache model and we denote with 𝑀 the cache size, and
with 𝑏 the size of the cache line.

Proposition 3.1. The cache complexity of AtA, 𝐶AtA (𝑛;𝑀,𝑏), is
the same as the cache complexity of Strassen, 𝐶𝑆 (𝑛;𝑀,𝑏) = Θ(1 +
𝑛2/𝑏 + 𝑛log2 (7)/𝑏√𝑀), [17].

Algorithm 2: RecursiveGEMM

Input: A ∈ R𝑚×𝑛,B ∈ R𝑚×𝑘 ,C = 0𝑛×𝑘

Output: C = A𝑇 · B
1 Procedure RecursiveGEMM(A, B, C)
2 if 𝑚 × 𝑛 +𝑚 × 𝑘 ≤ cache size then
3 C+ = blas_?gemm(A𝑇 , B);
4 return;
5 for 𝑖 = 1, 2 do
6 for 𝑗 = 1, 2 do
7 for 𝑘 = 1, 2 do
8 RecursiveGEMM(A𝑘,𝑖 , B𝑘,𝑗 , C𝑖, 𝑗 );

Proof. We prove the thesis by induction. First, we observe that
𝐶AtA (2;𝑀,𝑏) = 6𝐶𝑆 (1;𝑀,𝑏) ≤ 7𝐶𝑆 (1;𝑀,𝑏) = 𝐶𝑆 (2;𝑀,𝑏). Assum-
ing as inductive hypothesis that 𝐶AtA (𝑛/2;𝑀,𝑏) ≤ 𝐶𝑆 (𝑛/2;𝑀,𝑏), it
holds that:

𝐶AtA (𝑛;𝑀,𝑏) = 4𝐶AtA (𝑛/2;𝑀,𝑏) + 2𝐶𝑆 (𝑛/2;𝑀,𝑏)
≤ 6𝐶𝑆 (𝑛/2;𝑀,𝑏) ≤ 7𝐶𝑆 (𝑛/2;𝑀,𝑏) = 𝐶𝑆 (𝑛;𝑀,𝑏).

Furthermore, notice that:𝐶𝑆 (𝑛/2;𝑀,𝑏) ≤ 𝐶AtA (𝑛;𝑀,𝑏) ≤ 𝐶𝑆 (𝑛;𝑀,𝑏).
Hence, the thesis holds. □

4 PARALLEL ATA

Our algorithm for the A𝑇 A product, AtA, can be conveniently par-
allelized to work on both shared and distributed-memory systems.
We will refer to our shared and distributed-memory algorithms

for A𝑇 A as AtA-S and AtA-D, respectively. Our parallel imple-
mentations of AtA take advantage of the recursive nature of AtA
to distribute tasks (and possibly data) to different processes in an
efficient way. To do so, an initial phase that implements a scheduler
covering the recursion tree of AtA is integrated in both parallel
algorithms. In this way, we assign a task to each different parallel
process, as we explain in Section 4.1. After this preliminary phase,
each process knows which sub-problem it has to solve.

4.1 Preliminary phase: task assignment

Usually, recursive algorithms are parallelized with a fork-join para-
digm, according to their natural behaviour: at each recursive call, a
new thread is created to accomplish that call. However, repeatedly
creating and killing threads introduces a significant overhead, es-
pecially when it happens as a nested procedure. A parallelized for
loop approach can usually improve this thread start-up overhead.
For this reason, rather than addressing the problem by distributing
recursive calls between newly created threads, we simulate the
behaviour of a fork-join algorithm to determine, for each thread,
on which sub-matrices it must work. This is particularly useful to
generalize our approach to both shared memory and distributed
settings.

4.1.1 Building the task tree. To conveniently distribute tasks among
𝑃 parallel processes collaborating to computeA𝑇 A, in the first phase
of our algorithms, each process builds the recursion tree of a modi-
fied version of AtA, that we shall call AtANaive, and explores a
part of it with a breadth-first search (BFS), see Figure 1. AtANaive
considers classic recursive general matrix multiplication instead of
Strassen, and can be easily implemented by modifying Algorithm 1
to call RecursiveGEMM instead of Strassen. RecursiveGEMM,
summarized in Algorithm 2, is a recursive algorithm for the naive
general matrix multiplication. The reasons behind this choice will
be explained in Section 4.1.3. We define the task tree, denoted with
T , to be the sub-tree of the recursion tree of AtA, obtained by
spanning the latter with a BFS, that is interrupted as soon as T
counts 𝑃 leaves, labeled from 0 to 𝑃 − 1. Both AtA-S and AtA-D
implement the task tree, but with some differences concerning data
and task division. In AtA-D, each 𝑝-th leaf corresponds to the task
that process 𝑝 has to fulfil, and contains directives on both the
computational and communication activity that is due to the corre-
sponding process. Specifically, a leaf task 𝑡 provides the following
information:

(1) 𝑡 .𝑐𝑜𝑚𝑝𝑢𝑡𝑎𝑡𝑖𝑜𝑛𝑇𝑦𝑝𝑒: Which type of computation process 𝑝
has to carry out. It can be either a A𝑇 A or a A𝑇 B multiplica-
tion;

(2) 𝑡 .X.𝑜 𝑓 𝑓 𝑠𝑒𝑡 and 𝑡 .X.𝑞, with X ∈ {A,B,C}, 𝑞 ∈ {𝑚,𝑛}: The
row and column offsets as well as the size of the sub-matrices
of A and C process 𝑝 has to work on;

(3) 𝑡 .𝑝𝑎𝑟𝑒𝑛𝑡 : The parent process that sends sub-matrices of A
to its children (during the distribution phase), and to which
process 𝑝 has to send the result of the task that was assigned
to it or, if 𝑝 is the parent, the information on its children’
tasks (during result retrieval).

Inner nodes of T instead, represent tasks concerning data distri-
bution and retrieval, possibly involving sums of sub-matrices of
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Figure 1: A tree of 16 processes distributing 𝐴 ∈ R𝑛×𝑛 . Boxed labels on the right-hand side are the leaf nodes of the tree

generated by AtA-S, corresponding to computation tasks assigned to corresponding processes in the left-hand side leaf labels.

C = A𝑇 A, and consequent communication (point 3 of the previous
list), and are executed by a subset of processes. In contrast, in AtA-S
only leaf nodes of T correspond to a task, whereas inner nodes are
ignored, as no communication is involved. For the same reason, leaf
tasks only include information about what kind of computation the
corresponding threads have to carry out and on the sub-matrices
they have to work on (points 1 and 2 of the previous list).

4.1.2 Load Balancing. The task tree of AtA-D is created so that,
at each level, given 𝑃 available processes, 𝛼 · 𝑃 processes compute
a general A𝑇 B matrix multiplication; for the remaining (1 − 𝛼) · 𝑃
processes, a task for a A𝑇 A multiplication is assigned to them.
Here, 𝛼 ∈ (0, 1) is a parameter for balancing the workload among
distributed processes, as the computational complexity of a A𝑇 A
product is lower than the one of A𝑇 B. The task tree T is built
by calling RecursiveGEMM (whose computational complexity is
roughly twice the one of AtA, 𝑇 (𝑛)). Therefore the number of
multiplications carried out in T to perform A𝑇 B is twice the one
needed to compute A𝑇 A. The load balancing parameter must be
such that 4 ·𝑇 (𝑛)/(1−𝛼)𝑃 = 2 · 2𝑇 (𝑛)/𝛼𝑃 . In accordance, we set 𝛼 = 1/2.
This task division is repeated recursively at each level, by progres-
sively decreasing the number of available processes, 𝑃 . The number
of recursive parallel steps depends on 𝑃 and 𝛼 . In particular, for
𝛼 = 0.5, the number of parallel levels in the task tree, ℓ is given by
the following expression:

ℓ (𝑃 = 1) = 0, ℓ (2 ≤ 𝑃 ≤ 6) = 1

ℓ (𝑃 > 6) = 1 + 𝑘 + sign
(
𝑃

4
mod 8max{𝑘 ;1}

)
,

(5)

where 𝑘 = max
{
𝑘 ∈ N : 𝑃/48𝑘 ≥ 1

}
and sign(𝑥) is the sign function,

returning 0 for 𝑥 = 0 and 1 for 𝑥 > 0. Indeed, when AtA-D is

called on 𝑃 processes, 𝑃/2 of them are going to compute C2,1; out of
them, 𝑃/4 processes compute A𝑇

1,2A1,1, whereas the remaining 𝑃/4
are in charge for A𝑇

2,2A2,1 (see Equation 2). These tasks are in turn
distributed among 8 processes each, recursively (corresponding
to the eight recursive calls of RecursiveGEMM). This splitting is
repeated as long as it possible (i.e., until 𝑃/4/8𝑘 ≥ 1). If by doing
so, all 𝑃/4 processes are used (i.e., 𝑃/4 is a multiple of 8𝑘 , for some
𝑘), all processes work on equally sized matrices. Otherwise, some
processes will further split their tasks to smaller matrices, resulting
in an additional parallel level. We say that the last parallel level is
complete when all leaves corresponding to A𝑇 A tasks are grouped
in bunches of 6 siblings, and when all leaves corresponding to A𝑇 B
tasks are grouped in bunches of 8 siblings.

The task tree for AtA-S is quite different. In order to avoid
concurrent overlapping writes, input matrices are tiled in horizontal
and vertical blocks, as depicted in Figure 2. This way, we ensure that
each thread computes a different C𝑖, 𝑗 . With this new scheme, we
make three recursive calls to AtA (instead of 6) and four recursive
calls to FastStrassen (instead of 8). Therefore, the number of
parallel levels in AtA-S, given 𝑃 threads, is the following:

ℓ (𝑃 = 1) = 0, ℓ (𝑃 = 2, 3) = 1,

ℓ (𝑃 > 3) = 1 + 𝑘 + sign
(
𝑃

2
mod 4max{𝑘 ;1}

)
,

(6)

with𝑘 = max
{
𝑘 ∈ N : 𝑃/24𝑘 ≥ 1

}
. In Figure 1, we show an example

of the task tree with 16 processes for AtA-D, and the leaf nodes of
the task tree for AtA-S (boxed).
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4.1.3 Naive matrix multiplication over Strassen. In our parallel al-
gorithms, we do not rely on Strassen for general A𝑇 B matrix multi-
plication when building the recursion tree, that instead is created
by simulating AtANaive. This is done with the goal of optimiz-
ing the resources of distributed architectures, as the naive general
matrix-multiplication algorithm does not allocate the additional
memory required by Strassen, resulting in a faster memory man-
agement. Furthermore, Strassen’s algorithm would possibly cause
a hardly manageable workload unbalance between processes im-
plementing an A𝑇 A multiplication, and those that would be in
charge of computing the intermediate matrix sums appearing in
Strassen’s algorithm. However, Strassen’s algorithm can still be
used at leaf-level computation.

4.2 Shared-memory AtA

AtA can be implemented with a shared-memory parallel paradigm
on multi-core machines. We rely on OpenMP to efficiently dis-
tribute the workload between threads. Each thread simulates the
recursion of AtANaive as described in Section 4.1. The workload
is distributed so that each thread writes in a different memory loca-
tion, hence there is no need of handling data collisions of any kind.
Instead, the problem is divided in a fashion that makes it embar-
rassingly parallel. We call AtA-S our multi-threaded algorithm for
A𝑇 A.

4.2.1 AtA-S in detail. Let us denote with 𝑃 the number of available
threads. Our algorithm for multi-threaded machines, AtA-S, can
be divided into two phases. During the first phase, one task is
assigned to each thread by simulating the recursion of AtANaive,
as described in Section 4.1. In order to prevent memory collisions
and to achieve embarrassing parallelism, tasks are organized so
that each thread writes on a different and disjoint memory location.
This is done by dividing the resulting matrix C into four blocks, as
shown in Equation 2, whereas A is tiled vertically or horizontally,
instead of in 2 × 2 blocks (see Figure 2). This procedure avoids
concurrent writing management, it guarantees data and thread
reuse and relies on the equality:

C𝑖, 𝑗 = A𝑖,1B1, 𝑗 + A𝑖,2B2, 𝑗 = A𝑖,∗B∗, 𝑗 , (7)

for 𝑖, 𝑗 = 1, 2. Such instruction and data assignment allows for a
faster execution, since threads never need to synchronize.

During the second phase of AtA-S, each thread retrieves its
task from the tree T , specifying which routine (either AtA or
FastStrassen) the corresponding thread must call, and on which
sub-matrices of A and C it must operate. On multicore systems,
this means that data reuse in both L1 and L2 cache is optimized,
since each thread operates on the same data throughout its entire
lifespan. Since the tasks correspond to disjoint sub-problems, at the
end of the computation each thread only needs to synchronize with
the others, then the algorithm stops. In Algorithm 3 we provide the
pseudo-code of AtA-S.

4.2.2 Computational Complexity of AtA-S. We study the time com-
plexity 𝑇 (𝑛, 𝑃) of AtA-S to perform the multiplication A𝑇 A on an
𝑛 × 𝑛 matrix A and distributing the workload between 𝑃 processes.

At first, the algorithm needs to generate the task tree and each
process has to retrieve its task. These procedures have the same
complexity as a BFS visit on a tree with 𝑃 leaves, hence 𝑂 (𝑃).

Algorithm 3: AtA-S- Shared
Input: A ∈ R𝑚×𝑛
Output: Lower triangular part of C = A𝑇 · A

1 Procedure AtA-S(A)
2 Generate tree T ;
3 parfor each leaf-node 𝑣 of T do

4 Get task 𝑡 from node 𝑣 ;
5 if 𝑡 .𝑐𝑜𝑚𝑝𝑢𝑡𝑎𝑡𝑖𝑜𝑛𝑇𝑦𝑝𝑒 = A𝑇 A then

6 AtA (A𝑡 .A.𝑜 𝑓 𝑓 𝑠𝑒𝑡 , C𝑡 .C.𝑜 𝑓 𝑓 𝑠𝑒𝑡 , 1);
7 else if 𝑡 .𝑐𝑜𝑚𝑝𝑢𝑡𝑎𝑡𝑖𝑜𝑛𝑇𝑦𝑝𝑒 = A𝑇 B then

8 FastStrassen (A𝑡 .A.𝑜 𝑓 𝑓 𝑠𝑒𝑡 , A𝑡 .B.𝑜 𝑓 𝑓 𝑠𝑒𝑡 , C𝑡 .C.𝑜 𝑓 𝑓 𝑠𝑒𝑡 , 1);

The time complexity of the second step corresponds to the one of
the most expensive leaf task, which appears at the end of a path of
RecursiveGEMM calls. At level 𝑙 , the size of the product matrix C is
reduced to a block of size 𝑛/2𝑙 ×𝑛/2𝑙 , resulting from a multiplication
between 𝑛/2𝑙 ×𝑛 and 𝑛 ×𝑛/2𝑙 matrices. Thus, the total complexity is
reduced by 4ℓ (𝑃 ) , being ℓ (𝑃) the number of levels in the task tree.
Hence the total complexity of the algorithm is:

𝑇 (𝑛, 𝑃) = 𝑂 (𝑃) +𝑂
(

1
4ℓ (𝑃 )

𝑛log2 7
)
. (8)

Notice that ℓ (𝑃) is a discrete, non-injective function. Hence, espe-
cially with few processes, the speed-up behaves like a step function.
Despite this behaviour, ℓ (𝑃) ≈ log4 𝑃 , meaning with large numbers
of processes we achieve a theoretical linear speed-up.

Figure 2: Multiplication with vertical/horizontal tiling.

4.3 Distributed-memory AtA

Modern computers are equipped with an ever-increasing number
of cores inside CPU chips. However, when it comes to massive
volumes of data, computationally intensive tasks such as matrix
multiplication are simply prohibitive, even for the most recent 16-
or 32-cores chipsets, and even with hyper-threading capabilities.
Distributed parallelism plays a crucial role in this setting, as it allows
to distribute the workload between multiple machines. In such an
environment, providing fast distributed algorithms for operations
in Linear Algebra, including A𝑇 A multiplication, is a key task to
limit bottlenecks.

In this section, we describe a distributed algorithm for A𝑇 A, that
works for any matrix size and with arbitrarily many processes and
cores. We shall refer to this algorithm as AtA-D. AtA-D follows
a distribute-compute-retrieve paradigm, as initially the input ma-
trix A is stored on the root process only, and distributed to other
processes according to their tasks. Finally, the resulting matrix
C = A𝑇 A is retrieved back by the root process. We implement a
parallel communication scheme to limit data transfer overhead.
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Algorithm 4: AtA-D- Distributed
Input: A ∈ R𝑚×𝑛
Output: Lower triangular part of C = A𝑇 · A

1 Procedure AtA-D(A)
2 Generate tree T ;
3 for each 𝑣 of T in the path from my leaf to the root do
4 Get my task 𝑡 from node 𝑣 ;
5 if 𝑣 is a leaf then
6 if 𝑡 .𝑐𝑜𝑚𝑝𝑢𝑡𝑎𝑡𝑖𝑜𝑛𝑇𝑦𝑝𝑒 = A𝑇 A then

7 C𝑡 .C.𝑜 𝑓 𝑓 𝑠𝑒𝑡 = A𝑇 A(A𝑡 .A.𝑜 𝑓 𝑓 𝑠𝑒𝑡 );
8 else if 𝑡 .𝑐𝑜𝑚𝑝𝑢𝑡𝑎𝑡𝑖𝑜𝑛𝑇𝑦𝑝𝑒 = A𝑇 B then

9 C𝑡 .C.𝑜 𝑓 𝑓 𝑠𝑒𝑡 = A𝑇 B(A𝑡 .A.𝑜 𝑓 𝑓 𝑠𝑒𝑡 , A𝑡 .B.𝑜 𝑓 𝑓 𝑠𝑒𝑡 );
10 if 𝑡 .𝑝𝑎𝑟𝑒𝑛𝑡 ≠ my ID then

11 Send C𝑡 .C.𝑜 𝑓 𝑓 𝑠𝑒𝑡 to 𝑡 .𝑝𝑎𝑟𝑒𝑛𝑡 ;
12 else

13 Receive C𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛.𝑡 .C.𝑜 𝑓 𝑓 𝑠𝑒𝑡 from my children;
14 Sum over the sub-matrices and store result in C;

4.3.1 AtA-D in detail. Let 𝑃 be the number of distributed processes.
In AtA-D, each process 𝑝 first builds the task tree T as described
in Section 4.1. To understand in detail how T is used in AtA-D,
we shall refer to the example of Figure 1. As we said, each node
represents a task, but only tasks contained in leaf nodes correspond
to an actual matrix multiplication. Inner nodes instead represent
tasks assigned only to the parents of the nodes branching out of
them, and they are necessary to retrieve and combine the portions
of the result matrix scattered among different processes, and even-
tually to send them, level by level, up to the root process, 𝑝0. In the
example of Figure 1, T is the task tree for 𝑃 = 16 processes on a
square matrix. Leaf nodes are generated so that processes 𝑝0, 𝑝1 and
𝑝6 . . . , 𝑝11 share the workload to compute C2,1. The remaining half
of the processes is devoted to compute C1,1 and C2,2. If the number
of distributed processes is not enough to make a complete level,
as in this example, instead of calling multiple tasks on different
tiles of the matrices, processes perform either an A𝑇 A or a A𝑇 B
operation on vertically and horizontally tiled sub-matrices at the
leaf-level. For instance, observe the first batch of sibling-leaves in
Figure 1. To compute C𝑛/2:𝑛,0:𝑛/2 = A𝑇

0:𝑛/2,𝑛/2:𝑛A0:𝑛/2,0:𝑛/2, AtANaive
would perform 8 recursive calls to A𝑇 B; in AtA-D, each of these
calls is served by one distributed process, if available. When this is
not the case, as in the example that we are considering, processes
𝑝0, 𝑝6, 𝑝7, 𝑝8 divide A0:𝑛/2,𝑛/2:𝑛 and A0:𝑛/2,0:𝑛/2 in vertical tiles so as
to compute the related portions of C as depicted in Figure 2. When
the computation is over, partial results are collected by the parents
of each group of siblings (processes 𝑝𝑖 , 𝑖 = 0, . . . , 5). This opera-
tion is iterated by traversing the tree up to its root, 𝑝0, and allows
for a convenient parallel communication reducing data transfer
overhead. In order to optimize the communication and to reduce
the exchanged data volume, we encode the sub-matrices resulting
from A𝑇 A operations as packed lower triangular matrices. Never-
theless, the entire operation, once it returns to the root process,
still produces a standard square matrix. In Algorithm 4, we provide
the pseudocode of AtA-D. In line 11, if the process has to fulfill a
A𝑇 B task, it sends to its parent the entire sub-matrix C𝑡 .C.𝑜 𝑓 𝑓 𝑠𝑒𝑡 ;

otherwise, it only sends low(C𝑡 .C.𝑜 𝑓 𝑓 𝑠𝑒𝑡 ). In lines 7 and 9, A𝑇 A
and A𝑇 B may refer to AtA or blas_?syrk, and to FastStrassen
or blas_?gemm, respectively. As we shall see in Section 5, the real
benefit of using our implementation of AtA and FastStrassen
arises on matrices with larger size, therefore they are favourable
when handling larger volumes of data.

4.3.2 Computational and Communication Complexity of AtA-D. In
contrast to parallel algorithms for distributed matrices, AtA-D does
not include any communication between processes at computation
time, as the input matrix is scattered among distributed processes
so that they own the exact portions of A on which they have to
operate.

Proposition 4.1. The computational cost of AtA-D (Algorithm 4)
on a matrix of size 𝑛 and with using 𝑃 processes, 𝐶 (𝑛, 𝑃) is:

𝐶 (𝑛, 𝑃) = 𝑂
(
(𝑛/2ℓ (𝑃 ) )2 · 𝑛/2ℓ (𝑃 )−1

)
,

if the load balancing parameter 𝛼 is set to 0.5.

Proof. 𝐶 (𝑛, 𝑃) depends on the number of recursive levels that
can be layered with the available resources and on 𝛼 . For 𝛼 = 0.5,
the computational complexity of AtA-D is given by the time for
computing A𝑇 B on matrices of size at most 𝑛/2ℓ (𝑃 ) ×𝑛/2ℓ (𝑃 )−1, that is
𝑂

(
(𝑛/2ℓ (𝑃 ) )2 · 𝑛/2ℓ (𝑃 )−1

)
, where ℓ (𝑃) is the number of parallel levels

defined in Equation 5. □

We express the communication cost for matrix distribution and
result retrieval in terms of latency and bandwidth costs of a dis-
tributed algorithm, denotedwith 𝐿(𝑛, 𝑃) and 𝐵𝑊 (𝑛, 𝑃), respectively,
using the same definitions introduced in [3] and adopted also in
[26]. Latency cost is the communicated-message count, whereas
bandwidth is expressed in terms of communicated-word count.
Messages and words counts are computed along the critical path of
the distributed algorithm, as defined in [37].

Proposition 4.2. The latency of AtA-D on a matrix of size 𝑛 × 𝑛
and with 𝑃 processes is 𝐿(𝑛, 𝑃) = 𝑂 (2[7· (ℓ (𝑃)−1)+5]). Its bandwidth
is 𝐵𝑊 (𝑛, 𝑃) ≤ 6(𝑛/2)2 + 𝑛 (𝑛+2)

2 + 7/6𝑛2 (1 − 1/4ℓ (𝑃 )−2).

Proof. In AtA-D, the critical path corresponds to the sequence
of communication operations carried out by the root process 𝑝0.
After the first parallel level, 𝑝0 works on a A𝑇 B task and shares
its workload with 7 other processes at each parallel level. When
the compute phase is over, at each level 𝑙 ∈ {2, . . . , ℓ (𝑃)} pro-
cess 𝑝0 collects partial results from its (at most) seven children;
at level 𝑙 = 1, it retrieves the entire matrix C = A𝑇 A by com-
bining together the results of its five siblings. This operation is
carried out both for data distribution and result collection. Hence,
𝐿(𝑛, 𝑃) = 𝑂 (2[7 · (ℓ (𝑃) − 1) + 5]).
During the data distribution phase, message sizes (i.e., portions of
input matrix A) decrease when descending from the root down
to the leaves of T . In the first level, 𝑝0 distributes two matrices
of size 𝑛/2 × 𝑛/2 to the other process that is in charge to carry
out A𝑇 B tasks, and one sub-matrix of the same size to each of
its four siblings that have to compute A𝑇 A. For each level 𝑙 ∈
{2, . . . , ℓ (𝑃)}, the root process sends matrices of size 𝑛/2𝑙 to at most
7 other processes. Hence, during the distribution phase, 𝐵𝑊 (𝑛, 𝑃)
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is𝑂 (5 (𝑛/2)2 +7 ·∑ℓ (𝑃 )
𝑙=2 (𝑛/2

𝑙 )2) = 𝑂 (5(𝑛/2)2 + 7/12𝑛2 (1− 1/4ℓ (𝑃 )−2)).
With similar considerations and taking into account the fact that
processes sending symmetric portions ofC only store its lower trian-
gular part (low(C)), it holds that the bandwidth during the result re-
trieval phase amounts to𝑂 ((𝑛/2)2+4(𝑛 (𝑛+2)/8) +7 ·∑ℓ (𝑃 )

𝑙=2 (𝑛/2
𝑙 )2) =

𝑂 ((𝑛/2)2 + 𝑛 (𝑛+2)/2 + 7/12𝑛2 (1 − 1/4ℓ (𝑃 )−2). The thesis follows by
summing together the two components. □
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Figure 3: AtA vs Intel MKL dsyrk
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Figure 4: FastStrassen vs Intel MKL dgemm

From this analysis, we see that computation has the prominent
role in time complexity𝑇 (𝑛, 𝑃) = 𝐶 (𝑛, 𝑃) +𝐿(𝑛, 𝑃) +𝐵𝑊 (𝑛, 𝑃). This
fact will be confirmed by our experimental results, presented in
Section 5, where we see how increasing the matrix sizes provides
an always increasing benefit in using the distributed algorithm,
proving that communication cost 𝐿(𝑛, 𝑃) + 𝐵𝑊 (𝑛, 𝑃) is absorbed
by the computational cost, 𝐶 (𝑛, 𝑃), for growing values of 𝑛.

5 PERFORMANCE EVALUATION

We evaluate the performance of our algorithms with an extensive
set of experiments over multiple benchmarks. Our code is available
at https://github.com/filthynobleman/AtA.

5.1 Experimental Setup

All tests reported in this section were run on TeraStat1, a cluster
of 12 compute nodes, each equipped with 2 sockets of Intel Xeon
E5-2630v3 8 cores, 2.4 Ghz, 4 GB RAM per core.

We test our algorithms and benchmark solutions on square and
tall matrices, generated randomly. We carry out experiments in

1https://www.dss.uniroma1.it/en/node/6554

both single and double floating-point precision, to highlight the
fact that our algorithm achieves good performance in both settings.

In the tests, we exploit the Intel Math Kernel Library (MKL)
both by integrating BLAS routines for basic matrix operations,
and for the validation of the proposed algorithms through perfor-
mance comparisons with shared and distributed memory parallel
benchmark solutions. MKL is a framework that includes routines
and functions optimized for Intel and compatible processor-based
computers, and provides C/C++ interfaces and the acceleration of
libraries for Linear Algebra (including BLAS and ScaLapack) within
several third-party math libraries. [16, 35].

5.2 Metrics

To compare the performance of our algorithms against benchmark
methods, we use the average elapsed time in seconds and the effec-
tive GFLOPs. Effective GFLOPs is a measure for comparing classical
and fast matrix-multiplication algorithms. For classical algorithms,
which perform 2𝑛3 floating point operations, Equation 9 gives the
actual GFLOPs; for fast matrix-multiplication algorithms, it gives
the performance relative to classical algorithms, but does not accu-
rately represent the number of floating point operations performed
[11]. For fair comparisons, we calculate the metrics as:

effective GFLOPs =
𝑟𝑛3

execution time in seconds · 109
(9)

where 𝑟 = 1 when we test algorithms specifically built for the A𝑇 A
product, whereas 𝑟 = 2 when algorithms for the general matrix
multiplication are tested.

5.3 Sequential

Figures 3 and 4 show the execution time and effective GFLOPs
of the sequential AtA and FastStrassen routines, respectively.
Their performance is compared to the Intel MKL counterparts:
dsyrk and dgemm. The experiments are carried out on matrices of
growing matrix size (from 2.5 · 103 to 2.5 · 104), and run on a single
Intel core. The time difference between our solutions and the ones
implemented by Intel MKL grows with the matrix size, reflecting
the lower computational cost of our approach. Figure 4 proves
how Strassen’s algorithm benefits from the pre-memory-allocation
strategy described in Section 3.3.

5.4 Shared memory

For evaluating the shared memory parallel implementation of the
A𝑇 A product, AtA-S, we compare it against the Intel MKL imple-
mentation of the BLAS routine ssyrk, for single precision symmet-
ric rank-𝐾 update. For both methods, we always use a 16 thread
setup, and we analyse the execution time and the effective GFLOPs
(Equation 9 with 𝑟 = 1) while varying the number of available cores.
In light of the sequential experiments shown in Figures 3 and 4, we
compare AtA-S and MKL ssyrk on larger matrices, where tests
highlight more interesting results. In particular, we run experiments
on square matrices of size 3 · 104 × 3 · 104, 4 · 104 × 4 · 104 and on tall
matrices of size 6 · 104 × 5 · 103. Figure 5 summarizes our results.
As anticipated by the study of the computational complexity, the
execution time is reduced by 1/4 at each complete parallel level.
Figures 5(a), 5(c) and 5(e) show how our algorithm can compete

https://github.com/filthynobleman/AtA
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(c) Elapsed time, A ∈ R40𝐾×40𝐾 .
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(e) Elapsed time, A ∈ R60𝐾×5𝐾 .

2 4 6 8 10 12 14 16
0

200

400

600

800

1,000

1,200

1,400

?
? ?

? ? ? ? ?

number of cores, P

?AtA-S
MKL ssyrk

(f) EGs, A ∈ R60𝐾×5𝐾 .

Figure 5: Experimental results of AtA-S and IntelMKL dsyrk
in terms of elapsed time in seconds (left column) and effec-

tiveGFLOPs (right column), varying the number of available

cores 𝑃 on fixedmatrix sizes with a 16 threads configuration.

with the MKL implementation when the core availability is large,
and that significantly outperforms the Intel implementation in the
𝑃 ≤ 10 cores setup. Furthermore, we show in Figures 5(b), 5(d)
and 5(f) that AtA-S is capable not only of accomplishing a large
amount of floating point operations per second, but also that its
performance growth rate is consistent with the step-wise behaviour
of the time complexity studied in Section 4.2.2. This justifies spo-
radic thinnings in performance gap between the twomethods. From
Figure 5, we can observe that the performance of both methods
stall when more than 8 cores are used. Indeed, multi-threaded MKL
automatically chooses the optimal number of threads (in our archi-
tecture, this corresponds to 16 threads). For a fair comparison, we
use the same setup in AtA-S. Performance scales with the number
of available cores, but, when hyper-threading is enabled, 8 cores
are enough to reach the 16-thread plateau. Therefore, performance
cannot increase significantly for 𝑃 > 8.

5.5 Distributed memory

To complete our performance evaluation, we also compare our
implementation for distributed architectures of AtA, AtA-D, with
fast distributed algorithms for matrix multiplication. We recall

that AtA-D differs from standard methods for distributed matrix
multiplication, as it does not perform computations on distributed
matrices. Instead, in AtA-D the input matrix A is only stored by
the root process, 𝑝0, that first distributes it among other processes
cooperating to perform the A𝑇 A product, and then collects the
partial result of each process to combine them. This approachmakes
our method unsuitable for distributed chains of operations, since
for every operation, the matrix must be repeatedly scattered and
gathered back, thus introducing communication overhead, but our
results highlight that it is an efficient alternative for distributing
single A𝑇 A operations. At the current state-of-the-art, there are a
variety of methods for multiplying distributed matrices, but in the
most recent literature there are three algorithms which stand out:

(1) Intel MKL ScaLapack p?syrk: the Intel Math Kernel libraries
(MKL) provide optimized implementation of ScaLapack rou-
tines for high-performance dense Linear Algebra operations
on distributed clusters. In ScaLapack, distributed processes
are organized in 2D grids of size𝑚𝑃 ×𝑛𝑃 = 𝑃 . For each value
of 𝑃 , we set optimal𝑚𝑃 and 𝑛𝑃 by calling MPI_Dims_create.
We analyse the execution time required to perform the A𝑇 A
matrix multiplication by the built-in ScaLapack function
pdsyrk, and the time to retrieve the result of the operation.

(2) CAPS2: the Communication-Optimal Parallel Algorithm for
Strassen’s Matrix Multiplication [1] is a distributed algo-
rithm for general square matrix multiplications AB. Soon
after CAPS, the same authors proposed CARMA [11], that
also handles rectangular matrices. Nevertheless, it was not
possible to test this method as it relies on Cilk Plus, a tool
for parallel computing now marked as deprecated3.

(3) COSMA4: differently fromCAPS, this communication-optimal
algorithm for general matrix multiplication does not rely on
Strassen’s algorithm, instead, it uses red-blue pebble game
to precisely model the matrix-multiplication dependencies.
In [26], the authors show that COSMA outperforms all pre-
viously proposed frameworks for general matrix multiplica-
tion. It also works for multiplication on transposed matrices,
and therefore we test it to perform A𝑇 B products.

To simulate massively distributed architectures, in our exper-
iments, we reserve only one core per distributed process. As a
consequence, each process has small memory availability (4GB
RAM/core). The results of our experiments for the distributed-
memory solution are shown in Figure 6. In Figures 6(a), 6(d) and 6(g),
marked lines represent the compute time of all considered methods.
The shaded areas above the curves describing AtA-D and pdsyrk
represent the additional time required for communication, i.e., for
retrieving the resulting matrix to the root process. We consider two
groups of square matrices, having size 104 and 2 · 104 (Figures 6(a),
6(b), 6(c) and 6(d), 6(e), 6(f) respectively), and one set of tall matrices
of size 6 · 104 × 5 · 103 (Figures 6(g), 6(h), 6(i)). Because CAPS does
not operate on rectangular matrices, we could not test it on the
latter set of experimental configurations. As we can observe from
Figure 6, scalability of AtA-D is nonlinear and it rather follows
an almost-stepwise trend with respect to 𝑃 . This is a consequence

2https://github.com/lipshitz/CAPS/
3https://www.cilkplus.org/, Last accessed 07-01-2021
4https://github.com/eth-cscs/COSMA

https://github.com/lipshitz/CAPS/
https://github.com/eth-cscs/COSMA
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Figure 6: Experimental results of AtA-D, IntelMKL pdsyrk, CAPS andCOSMA in terms of elapsed time in seconds (left column),

effective GFLOPs (central column) and % of theoretical peak (right column) varying the number of distributed processes 𝑃 on

fixed matrix sizes.

of Equation 5, that shows how some values of 𝑃 allow for a more
effective and balanced workload between processes. This is evi-
dent for small values of 𝑃 (when a greater availability of processes
weighs significantly on the workload of each process), as well as for
𝑃 = 64. Despite the different nature of the parallelism implemented
in AtA-D with respect to the benchmark methods analysed in this
section, our experiments corroborate the efficiency of the task dis-
tribution implemented in AtA-D. In Figures 6(c), 6(f) and 6(i) we
show the percentage of theoretical peak performance (TPP) for all
tested algorithms. We compute it as the effective GFLOPs over the
theoretical performance peak of the nodes of our cluster. For all
tested methods, the effective GFLOPs are computed as in Equation 9,
(as those reported in Figures 6(b), 6(e), 6(h)), except for AtA-D, for
which we now use the complexity of AtA (Equation 3). Regarding
the percentage of theoretical peak, we can see how our algorithm
has comparable behaviour with respect to the other solutions on
square matrices, but it performs worse on the rectangular case. The
high performance of our method relies on careful ordering and

placement of highly optimized BLAS routines. However, especially
when working on tall matrices, we need to perform several calls to
BLAS Level 1 routines (i.e., to compute intermediate sums both in
AtA and FastStrassen) and system calls (i.e., memory copies) on
very short rows. This leads to more memory accesses and poorer
vectorization capability than dealing with the same amount of data,
distributed in fewer, longer rows, would entail. As a consequence,
the overall performance with respect to the theoretical peak is wors-
ened. Furthermore, in Figures 6(c), 6(f) and 6(i) we see that AtA-D
loses a bit of efficiency on larger matrices. This is due to the fact that
each process calling the FastStrassen routine needs to allocate
3/2𝑛2 space of memory, hence memory handling slows down the
entire process. In addition, also in the last column of Figure 6, we
can observe performance peaks after slow degradations as we did
in the first two. We stress that this is a consequence of the fact that
for some values of 𝑃 , workload among processes is distributed more
efficiently (see Equation 5). As a matter of fact, the computational
complexity of AtA-D decreases exponentially at each level, but
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𝑛 SM (16 cores) DM (96 cores) Speed-up
30K 45.16 s 21.24 s 2.13
40K 106.19 s 43.96 s 2.42
50K 221.63 s 81.77 s 2.71
60K 863.32 s 129.08 s 6.69

Table 1: Shared memory (SM) vs distributed memory (DM)

A𝑇 A implementation on large square 𝑛 × 𝑛 matrices.

the number of levels increases logarithmically with the number of
processes, 𝑃 . Therefore for numbers of processes that result in the
same number of parallel levels, the improvement is less appreciable.

Finally, in order to study the scalability of AtA-D with respect to
AtA-S, and to validate the possibility of integrating the two meth-
ods, we compare AtA-S and AtA-D on very large matrices of in-
creasing size and report results in Table 1. AtA-S works on 16 cores
with 16 threads, whereas AtA-D works on 6 distributed nodes, each
equipped with 16 cores, for a total of 96 cores. Each node executes
a distributed process calling either AtA-S for A𝑇 A-type products,
or multi-threaded MKL dgemm for A𝑇 B-type multiplications. The
times reported in Table 1 for AtA-D also include communication
time (for distributing data and collecting results). Speed-up is com-
puted as 𝑇𝑆𝑀/𝑇𝐷𝑀 , where 𝑇𝑆𝑀 and 𝑇𝐷𝑀 are the execution times of
the shared and the distributed-memory algorithms, respectively. In
accordance with our computational and communication cost anal-
ysis (Section 4.3.2), the speed-up of AtA-D over AtA-S increases
when the size of the input matrix increases, as the computation
cost overwhelms the communication overhead. Furthermore, the
shared-memory implementation suffers when considering larger
matrices, since frequent memory access slows down execution (two
60𝐾 × 60𝐾 matrices require 57 GB out of the 64 GB available on
the test machine), consequently decreasing performance. This is
highlighted by the results of Table 1, where we can observe that
60𝐾 × 60𝐾 matrices require high computation time, dominated by
the time for memory management.

6 CONCLUSIONS

We propose AtA, an algorithm for the A𝑇 A product, that reduces
the computational complexity of commonly employed algorithms,
and that is conveniently implementable in practice on matrices
defined on arbitrary domains and of any size and aspect ratio. The
computational cost of AtA benefits from the fast matrix multipli-
cation introduced by Strassen’s algorithm, and is cache-oblivious.
We show that AtA can be efficiently implemented in shared and
distributed memory environments. In the shared memory imple-
mentation of AtA, tasks are assigned to parallel threads so that
they work in perfect parallelism. Our theoretical analysis is sup-
ported by experiments that prove the excellent performance of our
implementations in comparison with state-of-the-art counterparts.
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