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Figure 1: Temporal evolution (left to right) of the wilting process of a tomato plant (Solanum lycopersicum) simulated with our
approach (top) and captured using an experimental setup in the laboratory (bottom).

ABSTRACT

Plants are among the most complex objects to be modeled in com-
puter graphics. While a large body of work is concerned with struc-
tural modeling and the dynamic reaction to external forces, our
work focuses on the dynamic deformation caused by plant internal
wilting processes. To this end, we motivate the simulation of water
transport inside the plant which is a key driver of the wilting pro-
cess. We then map the change of water content in individual plant
parts to branch stiffness values and obtain the wilted plant shape
through a position based dynamics simulation. We show, that our
approach can recreate measured wilting processes and does so with
a higher fidelity than approaches ignoring the internal water flow.
Realistic plant wilting is not only important in a computer graph-
ics context but can also aid the development of machine learning
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algorithms in agricultural applications through the generation of
synthetic training data.
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1 INTRODUCTION

High quality plant models are required as content in games and
movies as well as for applications in architecture, urban planning,
and forestry [Deussen and Lintermann 2005]. Moreover, synthetic
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data generated from detailed crop models is nowadays applied to
train smart systems carrying out computer vision tasks in agricul-
ture [Klein et al. 2023]. For instance, SWEEPER — a sweet pepper
harvesting robot — has been successfully trained using synthetic
data to estimate the exact location of the individual peppers [Barth
et al. 2018; Wouter Bac et al. 2017].

While numerous studies in computer graphics and agricultural
research have provided solutions to dynamically simulate the 3D
development of plants, these works usually focus on the growth
process itself [Sun et al. 2012]. Processes such as plant reaction to
stresses, e.g., disease or drought, are rarely simulated in a way that
are useable for rendering. The main reasons for this are twofold:
on the one hand, the detailed understanding of developmental pro-
cesses controlling stress reactions of plants is still an active topic of
research in biology, and on the other hand, the efficient integration
of plant and mechanical signaling in a computer simulation poses
non-trivial numerical challenges.

Specifically, overcoming the challenge of comprehending plant
reaction to drought is becoming an increasingly important task
for humanity. More frequent drought conditions due to climate
change are widely believed to cause die-back of forests in Europe,
and unpredictable climatic events can have a detrimental impact on
yield production in agriculture [Banerjee et al. 2014]. Consequently,
the phenomenon of plant wilting is becoming more common in
many regions.

In our method, we integrate a physical model of water distribu-
tion through the plant’s vascular system which is essential for plant
growth. We focus on the description of the wilting process as a re-
sult of insufficient water supply of the plant. Our model is based on
a partial differential equation (PDE) description of plant hydraulics
and a simplistic model of evapotranspiration for leaves. This model
allows us to calculate the continuous water flow dynamics mapped
to a discrete graph representation of the plant structure. In contrast
to other models of plant hydraulics presented in the literature, our
approach is based on efficient approximations of analytical solu-
tions using an optimized backward difference formula integration
scheme.

In summary, our technical contributions are as follows: (i) We
identify the importance of simulating the hidden water flow inside
the plant to faithfully recreate its dynamic behavior, (ii) we pro-
pose a simple but physically inspired model to simulate said water
flow, and (iii) we connect the water flow to the shape change dur-
ing wilting through a stiffness mapping and subsequent physical
simulation and successfully recreate it.

2 RELATED WORK

Faithfully modeling trees and plants is a longstanding goal in com-
puter graphics research. Many of the early approaches focus on
modeling the morphology of branching structures. Methods exist
to generate branching patterns based on fractals [Aono and Kunii
1984], grammars [Aono and Kunii 1984], repetitive patterns [Oppen-
heimer 1986], cellular automata [Greene 1991], and even particle
systems [Reeves and Blau 1985]. L-systems [Prusinkiewicz and Lin-
denmayer 1990] enable generating plants based on production rules
that can be used to express branching patterns for a wide range of
plants. Combined with geometric modeling and user interaction,
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Figure 2: The water diffusion model we propose is designed
to be a plug-and-play extension to different kinds of physical
simulators. By using the topology of the simulated plant, it
can compute the complex behavior of the water diffusion
inside the plant itself. The water distribution is then used
by the physical simulation to compute wilting deformations
more realistically than those obtained by the manual tuning
of the plant’s stiffness.

rule-based modeling [Lintermann and Deussen 1999] allows gener-
ating highly complex tree models - even for less experienced users.
More recent procedural modelling approaches aim to express tree
growth in a phenomenological or self-organizing manner [Palubicki
et al. 2009; Runions et al. 2007; Stava et al. 2014].

Several approach focus on reconstructing trees and plants based
on sensor data. Popular methods for tree reconstruction span from
leveraging images [Bradley et al. 2013; Li et al. 2021; Reche-Martinez
et al. 2004; Tan et al. 2008] and point clouds [Liu et al. 2021; Livny
et al. 2011], to videos [Li et al. 2011], segmentation masks [Ar-
gudo et al. 2016], silhouettes [Wither et al. 2009], and envelope
shapes [Benes et al. 2009]. Li et al. [2013] reconstruct plants from
sequences of point cloud data to identify branching patterns to
faithfully model budding and bifurcation events for leafy plants.

On a different trajectory researchers have explored to use sketch-
based interfaces to model trees [Okabe et al. 2007], plants [Anasta-
cio et al. 2006], and even flowers [Ijiri et al. 2006]. Compared to
other approaches, sketch-based plant modeling provides more fine-
grained control, which often is of high relevance for content cre-
ation. Moreover, it has been shown that sketch-based modeling can
be combined with evolved procedural approaches to generate com-
plex branching patterns with lightweight user intervention [Longay
et al. 2012].

More recently, a number of methods focus on the dynamics and
physically-plausible modeling of plants. This ranges from inter-
actively modeling and animating the growth of plants [Longay
et al. 2012; Pirk et al. 2012a], the response of plants to physical
phenomena, such as wind [Habel et al. 2009; Pirk et al. 2012b;
Quigley et al. 2018] or fire [Pirk et al. 2017], the simulation of the
cambium of trees [Kratt et al. 2015], to the interaction of plants
with their environment [Pirk et al. 2012b; Wong and Chen 2015].
Zhao and Barbic [2013], as well as Wang et al. [2013], use finite
element methods (FEM) solvers to simulate biophysical and biome-
chanical deformations of plants to capture their plasticity and to
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generate plant motion. Owens et al. [2016] propose algorithms for
modeling and animating the development of inflorescences, while
Ringham et al. [2021] aim at increasing the realism of flower models
based on a combination of mathematical models for pigmentation
patterns. Wang et al. [2017] propose a multimaterial model for pro-
ducing realistic simulations based on the biomechanics of trees.
The simulation of biological and physical phenomena for plants
is often realized through efficient representations, such as plant
modules [Palubicki et al. 2022], particles [Hadrich et al. 2017], or
discretization schemes that specifically consider the morphology
of plants, such as veins [Jeong et al. 2013], or branches [Pirk et al.
2017].

Closest to our work are the approaches of Hédrich et al. [2017]
and Shao et al. [2021] who also employ position-based dynam-
ics [Bender et al. 2017] for simulating the growth of climbing plants
and the rod-dynamics of branching structures. Finally, our approach
is similar to the objective of Jeong et al. [2013] who also aim to
simulate the morphological changes of drying leaves. The wilting
of leaves has been largely investigated from both a visual [Lu et al.
2008, 2009] and a more physically based point of view [Tang et al.
2013]. Furthermore, Chen et al. [2018] studied the more general phe-
nomenon of thin shells deformation induced by a drying process.
However, unlike these methods we propose a physically-plausible
diffusion model that allows us to simulate the water flow in the
vascular system and - consequently - the wilting of an entire plant.

3 METHODOLOGY

In this section, we analyze the process of water transport and evap-
otranspiration inside plants. From that, we derive a computational
model for simulating the water diffusion, and we determine the
system’s initial conditions.

3.1 Water Uptake and Loss Process

Plants lose a significant amount of water via evaporation and tran-
spiration. About 95% of water loss happens on leaves and about
5% on the stem [Roberts 1986]. The loss of water depends on the
surface area and ranges from [15,250]g/(h - m?) during daytime
to [1,20]g/(h - m?) during night. Since transpiration happens via
wetting the surface of the plant’s cells, the water loss rate reduces
as the plant dries out [Roberts 1986].

Water uptake happens via a water potential gradient from the
soil to the air, passing through the roots, the stem, and the leaves.
Water moves from areas with higher potential to areas with lower
potential, and according to Molz [1981] one of the simplest models
for water transport is to relate the rate of water flow in direct
proportion with the water potential difference, i.e.,

a0 AY
=z )
ot R
where 0 is the amount of water, t is time, ¥ is the water potential,
and R is the resistance to the water flow.

Water potential depends on various properties like osmosis, grav-
ity, and humidity [Taiz et al. 2015]. However, water pressure inside
the cells of plants is usually the most significant term; hence, we
can approximate the potential by considering only the pressure.
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As the water transpires and evaporates, the pressure at leaves
decreases, and water starts moving upward more rapidly. How-
ever, if the water intake from the soil is reduced (or stopped), the
water leaving the lower parts of the plant is never replaced, and
the pressure slowly decreases. Eventually, the water transport be-
comes slower and slower until the plant runs out of water and dies
completely.

3.2 Computational Model

We model a plant as a graph (i.e.,, as a pair of nodes and edges)
that includes the main structure (stem and branches) as well as
the leaf veins. This allows for a unified handling of all plant parts:
Nodes in the main structure have a loss rate £, = 0, whereas nodes
representing the venation of a leaf have a loss rate £, = § A,. Here,
d is the water loss rate per surface area, and it is constant for the
entire plant, and A, is the leaf surface area covered by that node,
which we approximate as A, = ry hy. We approximate the node
segments with a cylinder of radius r, and height hy, from which we
can compute the volume V;,. We associate to each node the water
amount 0, contained in that segment, and we compute the water
pressure at the segment as P, = 3—2

Finally, at each node, we also compute the water flow resistance
through the segment using the equation for circular pipes [Cengel
and Cimbala 2018]: R, = sﬂp_r}%,,’ where p is the dynamic viscosity
of the water. For the resistance to the water flow along an edge
e = (u,v), we average the resistances at the nodes R, = @.

With all these quantities defined, we can set up a system of
differential equations from (1) and integrate the water loss induced
by the transpiration of the leaves. For each node v, said N, the set
of nodes adjacent to v, we have

90, P,-P, 1 (Gu Ou)

. — 0,0, = — — — — | = £,0,.

ot u;\(u R(u,v) ore u;\/v R(u,v) Vo Vu ore
@)

We now arrange all the water content values inside a vector
0 = (61, --- Op). We also define two diagonal matrices Dy and Dy,
respectively filled with the volumes and the water loss rates of the
nodes. By doing so, we can rewrite the system in (2) as follows:

20
E:RD‘_,le—DgO:(RD‘_,l—Dg)G, (3)

where R is a symmetric matrix defined as

1

s ue Nv s
Ru)
n
R= (sz,u) = (ru,v) =3\- Z Two, U=0, (4)
u=1
Uu#o
0, otherwise .

The matrix S =R D‘_,1 — Dy is a linear application that does not
depend on the water content and does not change over time. This
means the system of differential equations in (3) has a solution that
can be computed analytically as

(1) =exp (St) 0(0), ®)
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Figure 3: Amount of water inside different parts of the plant
over time. The thickness of the section determines the initial
amount of water. The farther the section from the leaf, the
more it retains water over time. Our water diffusion model
is able to capture the complexity of the water distribution,
as the rate of water loss is not constant over time.

which gives us a formulation for evaluating the water content of the
plant at each time instant ¢, assuming the initial water distribution
6(0) is known.

In Figure 3, we show that the solution to these differential equa-
tions is able to capture the complexity of the water distribution
inside the plant. The water evolution follows non-trivial curves
and moves around, trying to equalize the pressure everywhere,
changing its local flow according to how fast the water transpires
and evaporates from the leaves.

3.3 Initial Conditions

For determining the system’s initial condition, we notice the follow-
ing: a healthy plant can replace all the water it loses via transpiration
and evaporation. From the point of view of the water distribution,
the plant does not lose water at all, and hence, the water loss is 0
everywhere. By zeroing out the entire matrix D,, we see that the
system in (3) tends to equalize the pressure everywhere. Since we
assume the wilting process to start from a healthy plant in stable
conditions, we initialize the water distribution so that the pressure
is constant through the entire plant, namely 0,(0) = V.

4 ALGORITHMICS

In this section, we provide an efficient method for computing the
analytical solution of our water model. We then describe an alter-
native technique for efficiently computing a close approximation of
the solution when the system becomes too large. Finally, we show
how our water model can be integrated with a physical solver to
simulate the dynamics of a wilting plant.

4.1 Efficient Evaluation

The analytical solution provided in (5) guarantees numerical stabil-
ity and accuracy when computing the water diffusion, and allows
for the evaluation of the water distribution at any point in time with-
out the need to simulate the entire diffusion process or worrying
about the size of the time steps. However, the matrix exponential
is notoriously difficult to compute, and evaluating it at every frame
can easily become computationally unfeasible.
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We propose a two-step solution that moves all the heavy lifting
to the initialization step and allows a real-time evaluation at every
simulated frame. During the initialization of the water model, we
pre-compute the spectral decomposition of the system matrix S =
®AD~!. We obtain the matrix exponential as

exp (St) = ®exp (At) d7L, (6)

where exp (At) is computed by taking the component-wise expo-
nential of the diagonal entries of At.

Note, that is is not required to explicitly compute the matrix ex-
ponential since we are only interested in the matrix-vector product
exp (S t) 0(0). We can rearrange the computation order as

® (exp (At) (o‘lo(o))) , @)

so that we only evaluate matrix-vector products. Furthermore, we
do not require the inverse of the eigenvectors ® 1. We solve the lin-
ear system ®&, = 6(0) once during the initialization and then com-
pute the products ® (exp (At) &y), where the product exp (At) £,
is just a scaling of the entries of £, by the entries of the diagonal
matrix. Said n the size of the system (i.e., the number of nodes in
the tree structure), at each step of the simulation, we only have to
evaluate a single O(n?) operation, which can be easily parallelized
either on CPU or GPU for even more efficiency.

4.2 Handling of Large Plants

When dealing with small plants, the numerical stability of the
analytic solution comes in very handy. However, when dealing with
larger plants with thousands of nodes, the spectral decomposition
becomes unfeasible. For huge models, even the O (n?) matrix-vector
multiplication becomes too costly.

To overcome the problem, we propose an alternative evaluation
leveraging numerical integrators. The stiffness of the problem leads
us to rely on implicit stable methods, and we choose to use a sixth-
order backward difference formula (BDF6), which is a notoriously
stiffly stable algorithm [Siili and Mayers 2003]. Although lower
order BDF algorithms could be used, we show in Section 5.4 that
the performance of the water simulation with BDF6 are largely
dominated by the solver for dynamics of the plants, and hence
we decide to use an high order solution to achieve the maximum
possible accuracy.

The problem with this type of algorithms is that their solution
can be computationally costly to evaluate for large systems due to
the implicit formulation. However, by noticing that the system is lin-
ear and time-invariant, we can use the efficient approach described
by Cellier et al. [2006]. We keep track of the last six water evalua-
tions in a n X 6 matrix @(¢) and we store the coefficients of the al-
gorithmas & = £ and B = 47 (10, 72, —225, 400, —450, 360) .
By calling At the integration time step, and denoting by I, the nxn
identity matrix, we can obtain the water distribution 0(¢ + At) at
time ¢ + At by solving the sparse linear system

In—aAtS)0(t+At) =0(t)B. (8)

We notice that the matrix I,, —a At S is sparse, each row generally
containing no more than five or six entries. Furthermore, the system
is a constant across the entire simulation, which allows us to apply
an efficient sparse LU pre-factorization.
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Figure 4: Relative mean squared error of the solution ob-
tained with BDF6 over time, compared with the analytic so-
lution and averaged across plants with different resolutions.
Each curve is obtained by selecting a different time step for
the integration.

To verify the efficacy of this solution, we select a sample of dif-
ferent plants ranging from 300 to 2k nodes and simulate 1000 steps.
We compare the results from the simulation with those obtained
with the analytic solution and average the relative error across all
the plants. We also consider the error for various sizes of time step,
as the step size heavily affects the quality of the simulation. Figure
4 shows the results of our experiments, proving that our solution is
stable over time and robust even to large time steps. The error ac-
cumulates linearly over time and increases linearly as the step size
increases. However, the error always stays in an acceptable range,
except for long-lasting simulations with very large time steps.

4.3 Integration with Physics Simulators

Our water model is independent from the physical simulation of the
actual plant and can be easily integrated with different solvers. For
our implementation, we rely on a position based dynamics (PBD)
solver since it is a well-established method for the simulation of
plants and trees within the graphics community [Deul et al. 2018;
Pirk et al. 2017].

For the modeling of the plants, we use the representation pro-
posed in Deul et al. [2018], where each plant segment is a cylinder,
connected to each of its neighbors via a zero stretch-bend-twist
constraint. According to Kim et al. [1984], the elasticity modulus of
the cells of a plant increases with the relative water content. We
approximate this effect through the following logistic function for
computing the elasticity E from the water content:

1
1+exp(—x (60— x))

The function has two tunable parameters which are determined
during calibration: yy is the shift of the logistic curve along the axis
of 6, while x controls its steepness.

We find, that y( should usually be set to zero to immediately
start the wiling process while k acts more as a material parameter
that abstracts the complex cellular structure of plants. A deeper
evaluation of this is found in the next section.

Note, that the dynamic simulation of the plant is entirely rod
based in our approach. Since leaves are represented through their
veins in the plant graph, their deformation naturally emerges. While
we find that this gives convincing results in practice, methods with
a more detailed focus on leaf deformation have been presented as
well [Jeong et al. 2013].

E(0) = )
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Figure 5: Comparison of two different approaches for com-
puting the elasticity modulus of a plant against our method
based on the water diffusion. In all three cases, the elastic-
ity modulus at the root node is the same. Left: the elasticity
modulus is computed as 1/(1 + d) where d is the topological
distance of the node from the root node. Middle: the elastic-
ity modulus is computed as a linear function of the section’s
radius. Right: the elasticity modulus is computed from the
amount of water in the section obtained from the simulation
of the water diffusion.
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Figure 6: Comparison of the water curves obtained from
real data (blue curves) and simulation (orange curves) on
two different tomato plants. The initial water content of the
simulation is matched to the real plant, and we used the same
water loss rate for both plants.

5 RESULTS

In this section, we provide an evaluation of our water model against
the actual wilting processes of real plants. We then show how our
model can be calibrated to simulate various types of plants and
model different types of diseases.

5.1 Water Model Evaluation

To evaluate our water diffusion model, we record wilting processes
of real plants and compare the resulting data with those coming
from our simulation of the water transport. This evaluation is how-
ever fundamentally limited by the practical difficulties in measuring
the water content in individual plant parts. These measurements
can be acquired in two different ways: For highly accurate results,
the plant part is separated by cutting it off and then immediately
weighted on a highly sensitive scale. It is then slowly but thoroughly
dried (e.g., 15 hours at 80°C [Kim and Lee-Stadelmann 1984]) and
weighted again. The destructive nature of this method prohibits
obtaining a time series of water measurements.

Alternatively, different types of measurement devices for sap
flow can be attached to plant stems [Smith and Allen 1996]. Absolute
water values can be obtained through integration of the flow, but
these devices are rigid and comparably heavy and thus significantly
interfere with the dynamic deformation through wilting. They
furthermore require a minimum steam diameter making them not
applicable for most of our examples (especially not for the thin
branches that start wilting first).
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We can, however, measure the total water content of a plant
over time. To this end, the plant is carefully removed from the
surrounding soil and placed in a pot filled with dry sand on top of
a centigram precise scale. Since all water inside the setup is now
situated inside the plant, a weight loss of the whole system during
the wilting process directly corresponds to a water loss of the plant.

The initial water content of the plant is computed from the
weight difference of the plant at the beginning and end of the
wilting process. The virtual plant is modeled after the real plant
by using photographs from multiple directions. The radii of each
branch and the leaf sizes are adjust to fit the real plant. For all our
experiments, we modeled plants with 500 to 2000 nodes. We can
then simulate the wilting of the virtual plant and compare its water
loss curve directly to the real plant. Figure 6 shows the results of
this experiment on two different young tomato plants. We find,
that both the real and simulated plant exhibit the same exponential
water loss over time.

To evaluate not just the total amount of water inside the plant
but also its distribution we resort to a qualitative analysis due to the
aforementioned reasons. In Figure 5, we compare the plant shape
resulting from our wilting model to two different naive ones. We
find, that our approach is superior in catching the variations in
plant stiffness which gives credit to our water distribution model.

5.2 Environment and Material Calibration

The two main parameters used for calibration are the water loss
rate § (expressed in g s~! cm™!) and the elasticity mapping slope
(expressed in g~!). While § is a combination of the environment
(e.g., temperature, humidity, irradiation, etc.) and plant material
(different plants can evaporate a different amount of water per leaf
area and time), « is a pure material parameter the describes how
sensitive a plant is to water loss. In our experiments we keep the
environmental conditions constant by performing them inside a
room with constant temperature, humidity and illumination. We
explore how different combinations of these values affect the wilting
process in Figure 7.

5.3 Descriptive Power

We now show a variety of different results that can be achieved by
our method.

By tuning the model’s parameters, we can simulate various types
of crop plants, and we are not constrained to plants growing up
from the soil. Figure 8 shows an example of the simulation of a
hanging ivy plant. Ivy is notoriously resilient to water absence, so
we tuned down the water loss rate and the slope of the mapping
from water to elasticity. At the beginning of the simulation, the
main stems are strong enough to keep their shape even if the plant
is growing from top to bottom. After some time without water, the
plant loses its stiffness and starts to fall down following gravity.

Our model is also capable of handling larger plants, such as
are found in industrial greenhouse environments. These are often
forced into a specific and more efficient shape (in terms of growth
and harvest) by attaching them to a supporting structure such as
grids or wires. We implement this through positional constraints
on specific plant nodes in the physical solver. An example of a 2000
node tomato plant is shown in Figure 9. Scenarios like this can be
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Figure 7: The tunable parameters determine the wilting be-
havior of the plant. As the water loss rate () of the plant
increases, the plant loses water more rapidly and wilts faster.
In contrast, increasing the steep (k) in the mapping from
the water content to the elasticity modulus determines the
difference in stiffness between parts retaining the water dif-
ferently.

Figure 8: Our technique generalizes well to different types
of plants. Even if hanging plants grow downward, their
branches could be stiff and resistant. As the water amount
decreases, they tend to fall down, only affected by gravity.

used to train Al tasks in industrial farming applications [Klein et al.
2023].

Being derived from the connections on a tree structure, our water
diffusion model can also be used to model certain common diseases
and physical damages that alter the plants ability to transport water
to parts of it. To represent this kind of damage, we increase the
water flow resistance of a connection (or set it to an infinite value
to completely disabled transport) to reduce the amount of water
that can reach the top parts of the plant. We can also tune down
(or zero out) the loss rate of the bottom part of the plant if we want
it to be in a healthy state. In Figure 10, we show an example of
disease modeling where a point of the main stem is damaged and
cannot bring water to the top branches and leaves. We see that the
top part of the plant dries and wilts, whereas the rest of the plant
keeps its shape.
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Figure 9: Simulation of a large plant with 1954 nodes. As it is
common in industrial greenhouses, the main stem is fixed
to a supporting structure at several places, which prevents
the plant from entirely collapsing during wilting,.

Figure 10: Plants can be affected by diseases that prevent
water from diffusing correctly. With our model, we can sim-
ulate the entire plant and still obtain this behavior by simply
cutting or weakening a connection at some node. The cut pre-
vents water from flowing in some parts of the plant, which
will wilt without affecting the sections connected to the root.

5.4 Performance

As discussed in Section 4, our method consists of simulating the
water diffusion inside the plant, and then mapping the water con-
tent to the stiffness, leveraging on the PBD solver to simulate the
dynamics of the plant. Since our method relies on external solvers
for simulating the plant dynamics, we evaluate the performance by
coupling our method with a state-of-the-art PBD simulator, com-
paring at each frame the time required by solving for the physics
of the system with the execution time of our water model.

In Figure 11 we show how the execution time for a single sim-
ulated frame is distributed between the evaluation of the water
model (blue) and the simulation of the physics dynamics with the
PBD solver (orange). The time for the water model evaluation also
accounts for the time required by the mapping of the water to
the stiffness. We notice that the physics solver computationally
dominates the simulation step across different plants with varying
number of nodes. As both methods scale linearly, the time ratio
remains constant around 1%.

The number of simulated frames required is situational depen-
dent. The dynamic solver must converge to an equilibrium state,
which depends on the plant geometry. Since the water model is
evaluated much faster, the stiffness is adjusted after each PBD it-
eration. Smooth animations, such as shown in the supplemental
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Figure 11: Distribution of the average execution time between
the water model (blue) and the PBD solver (orange) at every
time step for different plants. The PBD solver is computation-
ally dominant independently on the number of nodes. The
experiments have been carried out on a machine equipped
with an Intel i7-10700K CPU and 32 GB of main memory.

video, generally require more frames for convincing visual quality,
e.g., the teaser scene was produced with 100 k simulator frames. On
the other extreme, producing static images of a few wilting states
require far fewer frames, e.g., the complex plant in Figure 9 was
computed with just 2000 frames.

6 CONCLUSION AND FUTURE WORK

We propose a physically-inspired diffusion model for simulating
water distribution inside a plant. Our model follows a computa-
tional scheme that can be computed efficiently, and we also propose
an approximation that introduces a negligible error and scales well
to problems with large sizes. The water diffusion model is defined
to work independently in a parametric space and can be integrated
with any physical simulator for simulating the dynamics of a wilt-
ing plant, other than existing approaches for simulating wilting
leaves. In contrast to hand-crafted wilting animations and ad-hoc
simulations, our pipeline exposes only two parameters that can be
adjusted to simulate a variety of different plants.

The definition of the problem can be adjusted with further intu-
itive tuning to match plants affected by certain diseases and physical
damages. Finally, we evaluate the model showing that its results
match experimental data and that the simulated wilting process is
visually convincing when compared to real wilting plants.

Our approach can be extended in several ways: Ligneous (woody)
plant parts are more resistant to deformation through water loss.
This could be modeled by allowing varying k values for different
plant parts. The current diffusion model also neglects the capability
of certain plants to react to external stress, such as closing the
leaf cells to reduce water evaporation. However, these complex
processes are still not fully researched, which makes them very
hard to model in a computer graphics context. It would furthermore
be interesting to directly couple more advanced models for leaves,
fruits, and flowers [Jeong et al. 2013; Kider Jr et al. 2011] with our
water model to increase realism of plant parts that are not modeled
well by elastic rods.
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